7.下面四組函數(shù)中,f(x)與g(x)表示同一個函數(shù)的是( 。
A.f(x)=|x|,$g(x)={({\sqrt{x}})^2}$B.f(x)=2x,$g(x)=\frac{{2{x^2}}}{x}$C.f(x)=x,$g(x)=\root{3}{x^3}$D.f(x)=x,$g(x)=\frac{1}{{\sqrt{x^2}}}$

分析 由函數(shù)的定義域及對應(yīng)關(guān)系是否相同分別判斷四個選項得答案.

解答 解:函數(shù)f(x)=|x|的定義域為R,$g(x)={({\sqrt{x}})^2}$的定義域為[0,+∞),定義域不同,不是同一函數(shù);
函數(shù)f(x)=2x的定義域為R,$g(x)=\frac{{2{x^2}}}{x}$的定義域為{x|x≠0},定義域不同,不是同一函數(shù);
f(x)=x,$g(x)=\root{3}{x^3}$=x,兩函數(shù)為同一函數(shù);
f(x)=x的定義域為R,$g(x)=\frac{1}{{\sqrt{x^2}}}$的定義域為{x|x≠0},定義域不同,不是同一函數(shù).
故選:C.

點評 本題考查函數(shù)的定義域及其求法,考查了判斷函數(shù)是否為同一函數(shù)的方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\frac{{{e^x}•{x^2}}}{{{e^{2x}}-1}}$的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線的焦點坐標(biāo)為(-$\frac{1}{32}$,0),則拋物線的標(biāo)準(zhǔn)方程為( 。
A.x=-8y2B.y=-8x2C.x=-16y2D.y=-16x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓$\frac{x^2}{16}+\frac{y^2}{9}$=1,直線l:y=kx+t(k為常數(shù),t≠0)與橢圓相交于A,B兩點,記△AOB的面積為S(其中O為坐標(biāo)原點),則函數(shù)S=f(t)的奇偶性為( 。
A.偶函數(shù)B.奇函數(shù)
C.非奇非偶函數(shù)D.奇偶性與k的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A={x||x-1|<2},Z為整數(shù)集,則集合A∩Z的子集個數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)在R上是增函數(shù),且f(2)=0,則使f(x-2)>0成立的x的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:(x+2)(x+1)<0命題$q:x+\frac{1}{x}∈[{-\frac{5}{2},-2}]$,則下列說法正確的是( 。
A.p是q的充要條件B.p是q的必要不充分條件
C.p是q的充分不必要條件D.是q的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)是定義在R上的奇函數(shù),且在(0,+∞)是增函數(shù),又f(-3)=0,則不等式x•f(x)≥0的解集是(  )
A.{x|-3≤x≤3}B.{x|-3≤x<0或0<x≤3}C.{x|x≤-3或x≥3}D.{x|x≤-3或x=0或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$f(x)=\sqrt{1-x}+lg(1-3x)$的定義域為( 。
A.(-∞,1]B.(0,1]C.$(-∞,\frac{1}{3})$D.$(0,\frac{1}{3})$

查看答案和解析>>

同步練習(xí)冊答案