18.已知數(shù)列{an}滿足:${a_1}=1,{a_2}=2,{a_{n+2}}={a_{n+1}}-{a_n}(n∈{N^*})$,函數(shù)f(x)=ax3+btanx,若f(a4)=9,則f(a1)+f(a2017)的值是-18.

分析 函數(shù)f(x)=ax3+btanx,可得f(-x)+f(x)=0.由${a_1}=1,{a_2}=2,{a_{n+2}}={a_{n+1}}-{a_n}(n∈{N^*})$,可得:an+6=an.即可得出.

解答 解:∵函數(shù)f(x)=ax3+btanx,∴f(-x)+f(x)=-ax3-btanx+ax3+btanx=0.
∵${a_1}=1,{a_2}=2,{a_{n+2}}={a_{n+1}}-{a_n}(n∈{N^*})$,∴a3=2-1=1,
同理可得a4=-1,a5=-2,a6=-1,a7=1,a8=1,….
∴an+6=an
∴a2017=a6×336+1=a1
若f(a4)=9,∴f(-1)=9.∴f(1)=-9
則f(a1)+f(a2017)=2f(a1)=-18.
故答案為:-18.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性、數(shù)列的周期性、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正項(xiàng)等比數(shù)列{an}中,a6=a5+2a4,若存在兩項(xiàng)am,an使得$\sqrt{{a_m}{a_n}}$=4a1,則$\frac{1}{m}$+$\frac{2}{n}$的最小值是( 。
A.$\frac{{3+2\sqrt{2}}}{6}$B.1C.$\frac{11}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,圓C1的極坐標(biāo)方程是ρ2+2ρcosθ=0,圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數(shù)).
(Ⅰ)求C1和C2的交點(diǎn)的極坐標(biāo);
(Ⅱ)直線l經(jīng)過C1和C2的交點(diǎn),且垂直于公共弦,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)實(shí)數(shù)x,y滿足x2=4y,則$\sqrt{{{({x-3})}^2}+{{({y-1})}^2}}+y$的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若直線y=b與函數(shù)f(x)=$\frac{1}{3}$x3-4x+4的圖象有3個(gè)交點(diǎn),則b的取值范圍(-$\frac{4}{3}$,$\frac{28}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一奶制品加工廠以牛奶為原料分別在甲、乙兩類設(shè)備上加工生產(chǎn)A、B兩種奶制品,如用甲類設(shè)備加工一桶牛奶,需耗電12千瓦時(shí),可得3千克A制品;如用乙類設(shè)備加工一桶牛奶,需耗電8千瓦時(shí),可得4千克B制品.根據(jù)市場需求,生產(chǎn)的A、B兩種奶制品能全部售出,每千克A獲利a元,每千克B獲利b元.現(xiàn)在加工廠每天最多能得到50桶牛奶,每天兩類設(shè)備工作耗電的總和不得超過480千瓦時(shí),并且甲類設(shè)備每天至多能加工102千克A制品,乙類設(shè)備的加工能力沒有限制.其生產(chǎn)方案是:每天用x桶牛奶生產(chǎn)A制品,用y桶牛奶生產(chǎn)B制品(為了使問題研究簡化,x,y可以不為整數(shù)).
(Ⅰ)若a=24,b=16,試為工廠制定一個(gè)最佳生產(chǎn)方案(記此最佳生產(chǎn)方案為F0),即x,y分別為何值時(shí),使工廠每天的獲利最大,并求出該最大值;
(Ⅱ) 隨著季節(jié)的變換和市場的變化,以及對(duì)原配方的改進(jìn),市場價(jià)格也發(fā)生變化,獲利也隨市場波動(dòng).若a=24(1+4λ),b=16(1+5λ-5λ2)(這里0<λ<1),其它條件不變,試求λ的取值范圍,使工廠當(dāng)且僅當(dāng)采。á瘢┲械纳a(chǎn)方案F0時(shí)當(dāng)天獲利才能最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)F2的直線交雙曲線右支于A、B兩點(diǎn).若AF2⊥AF1,且|BF2|=2|AF1|,則雙曲線的離心率為( 。
A.$\frac{\sqrt{17}}{3}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{13}$D.$\frac{\sqrt{58}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知點(diǎn)P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上一點(diǎn),F(xiàn)1,F(xiàn)2為雙曲線的左、右焦點(diǎn),使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O為坐標(biāo)原點(diǎn)),且|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|,則雙曲線離心率為( 。
A.$\frac{\sqrt{3}+1}{2}$B.$\sqrt{6}$+1C.$\sqrt{3}$+1D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F,圓M的圓心在x軸的正半軸上,圓M與y軸相切,過原點(diǎn)O作傾斜角為$\frac{π}{3}$的直線m,交直線l于點(diǎn)A,交圓M于不同的兩點(diǎn)O、B,且|AO|=|BO|=2,若P為拋物線C上的動(dòng)點(diǎn),則$\overrightarrow{PM}•\overrightarrow{PF}$的最小值為( 。
A.-2B.2C.$\frac{7}{4}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案