1.如圖所示,某機(jī)械轉(zhuǎn)動(dòng)的三個(gè)齒輪嚙合傳動(dòng).若A輪的直徑為180mm,B、C兩輪的直徑都是120mm,且∠ABC=70°,求A、C兩齒輪的中心距離(精確到1mm).

分析 由圖示可得,AB=90+60=150,BC=120,∠ABC=70°,運(yùn)用余弦定理,可得AC,注意近似運(yùn)算.

解答 解:由圖示可得,AB=90+60=150,BC=120,∠ABC=70°,
由余弦定理可得AC2=AB2+BC2-2AB•BC•cos∠ABC
=1502+1202-2×150×120×cos70°≈24587.27,
可得AC≈157(mm).
即有A、C兩齒輪的中心距離約為157mm.

點(diǎn)評(píng) 本題考查余弦定理在實(shí)際問(wèn)題中的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.x2+(y+2)2=3的圓心坐標(biāo)、半徑分別為( 。
A.(0,2);3B.(0,-2);3C.$({0,2});\sqrt{3}$D.$({0,-2});\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算題
(1)求值:${27^{\frac{2}{3}}}-{({\root{3}{-125}})^2}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+{log_2}3×{log_3}4$
(2)求不等式的解集:①33-x<2;②${log_5}({x-1})<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F(1,0),且經(jīng)過(guò)點(diǎn)P($\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$)
(1)求橢圓C的方程;
(2)若直線l與橢圓C相切,過(guò)F作FQ⊥l,垂足為Q,求證:|OQ|為定值(其中O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知拋物線過(guò)點(diǎn)(a,2),焦點(diǎn)到準(zhǔn)線的距離為-2a,則拋物線的標(biāo)準(zhǔn)方程為x2=32y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知曲線C1:$\frac{{x}^{2}}{8-k}$-$\frac{{y}^{2}}{4}$=1與C2:$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{6-k}$=1都是雙曲線,則( 。
A.0<k<8,C1與C2的實(shí)軸長(zhǎng)相等B.k<6,C1與C2的實(shí)軸長(zhǎng)相等
C.0<k<8,C1與C2的焦距相等D.k<6,C1與C2的焦距相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,空間四邊形PABC中,PA,PB,PC兩兩垂直,∠PBC=60°,求BC與平面PAB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.直線mx-y-(m-4)=0(m∈R)與線段y=$\frac{4}{3}$x-4(0≤x≤3)恒有公共點(diǎn),則m的取值范圍是( 。
A.m≥8或m≤-2B.m≥8C.m≤-2D.-2≤x≤8

查看答案和解析>>

同步練習(xí)冊(cè)答案