(2012•臺州模擬)在平面直角坐標系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點P(x1,y1),Q(x2,y2)之間的“折線距離”.則原點O(0,0)與直線2x+y-
5
=0
上一點P(x,y)的“折線距離”的最小值是
5
2
5
2
分析:根據(jù)新定義直接求出d(A,O);求出過O與直線 2x+y-
5
=0
的點坐標的“折線距離”的表達式,然后求出最小值.
解答:解:如圖,直線與兩軸的交點分別為 N(0,
5
),M(
5
2
,0)
,
設(shè)P(x,y)為直線上任意一點,作PQ⊥x軸于Q,于是有|PQ|=2|QM|,
所以d=|OQ|+|QP|≥|OQ|+|QM|≥|OM|,即當P與M重合時,dmin=|OM|=
5
2

故答案為:
5
2
點評:本題是中檔題,考查新定義,利用新定義求出函數(shù)的最小值問題,考查計算能力,對新定義的理解和靈活運應(yīng)是解好本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臺州模擬)已知函數(shù)f(x)=lnx-
1
2
ax2-2x(a<0)
(Ⅰ)若函數(shù)f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(Ⅱ)若a=-
1
2
且關(guān)于x的方程f(x)=-
1
2
x+b在[1,4]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臺州模擬)已知函數(shù)f(x)=log2(ax2+2x-3a).
(Ⅰ)當a=-1時,求該函數(shù)的定義域和值域;
(Ⅱ)如果f(x)≥1在區(qū)間[2,3]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臺州模擬)在邊長為6的等邊△ABC中,點M滿足
BM
=2
MA
,則
CM
CB
等于
24
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臺州模擬)設(shè)|
a
|=|
b
|=|
a
+
b
|≠0
,那么
a
-
b
b
的夾角為(  )

查看答案和解析>>

同步練習(xí)冊答案