3.函數(shù)f(x)=$\frac{sin(x+\frac{π}{3})}{sin(x+\frac{π}{4})}$,x∈[0,$\frac{π}{4}$]的最大值為$\frac{\sqrt{6}}{2}$.

分析 由兩角和與差的正弦函數(shù)公式化簡可得f(x)=$\frac{tanx+\sqrt{3}}{\sqrt{2}tanx+\sqrt{2}}$,設(shè)t=tanx+1,由x∈[0,$\frac{π}{4}$],則t=tanx+1∈[1,2],f(x)=$\frac{t+\sqrt{3}-1}{\sqrt{2}t}$,從而可求當(dāng)t=1時,f(x)min的值.

解答 解:∵f(x)=$\frac{sin(x+\frac{π}{3})}{sin(x+\frac{π}{4})}$=$\frac{\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx}{\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx}$=$\frac{tanx+\sqrt{3}}{\sqrt{2}tanx+\sqrt{2}}$,設(shè)t=tanx+1,由x∈[0,$\frac{π}{4}$],則t=tanx+1∈[1,2],
∴f(x)=$\frac{t+\sqrt{3}-1}{\sqrt{2}t}$=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}-1}{\sqrt{2}t}$,
∴當(dāng)t=1時,f(x)min=$\frac{\sqrt{2}}{2}+\frac{\sqrt{3}-1}{\sqrt{2}}$=$\frac{\sqrt{6}}{2}$.
故答案為:$\frac{\sqrt{6}}{2}$.

點(diǎn)評 本題主要考查了兩角和與差的正弦函數(shù)公式的應(yīng)用,正切函數(shù)的圖象和性質(zhì),屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)≥1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖象上去定點(diǎn)A(x1,f(x1)),B(x2,f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使 f′(x0)=k恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等差數(shù)列{an}中,a2,a10是方程2x2-x-7=0的兩根,則a6等于( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.-$\frac{7}{2}$D.-$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知(1+$\frac{x}{4}$)2n=a0+a1x+a2x2+…+a2nx2n(n∈N*).
(1)若a0+a1+a2+…+a2n=$\frac{625}{256}$,求a3的值;
(2)求證:an<$\frac{1}{\sqrt{2n+1}}$(n∈N*
(3)若存在整數(shù)k (0≤k≤2n),對任意的整數(shù)m(0≤m≤2n),總有ak≥am成立,這樣的k是否唯一?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線l過點(diǎn)(1,3)且與圓M:x2+(y+1)2=4相交于P、Q,弦PQ長為2$\sqrt{3}$,則直線l的方程為x=1,或15x-8y+9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正實(shí)數(shù)a,b滿足:a+b=2,記$\frac{1}{a}+\frac{1}$的最小值m.設(shè)函數(shù)$f(x)=|x-t|+|x+\frac{1}{t}|(t≠0)$,若存在實(shí)數(shù)x,使得f(x)=m,則x的取值范圍為( 。
A.[-1,1]B.[-2,2]C.[-1,0]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,首項(xiàng)a1=-2015且$\frac{{S}_{2014}}{2014}$-$\frac{{S}_{2012}}{2012}$=2,則S2015=-2015.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)x,y∈R,若x-|y|>0,則下列不等式中正確的是( 。
A.$\frac{1}{x}$<$\frac{1}{y}$B.$\frac{1}{x}$>$\frac{1}{y}$C.x2<y2D.x2>y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知2弧度的圓心角所對的弦長為4,那么這個圓心角所對的弧長為( 。
A.4B.sin 2C.$\frac{4}{sin1}$D.4sin 1

查看答案和解析>>

同步練習(xí)冊答案