分析 (1)根據(jù)絕對值的性質(zhì),分類討論,即可求出不等式的解集,
(2)根據(jù)柯西不等式即可求出答案.
解答 解:(1)①當$x<-\frac{1}{2}$時,不等式等價為$-(x-\frac{1}{2})-(x+\frac{1}{2})≤3$,即-2x≤3,$x≥-\frac{3}{2}$,此時$-\frac{3}{2}≤x<-\frac{1}{2}$;
②當$-\frac{1}{2}≤x≤\frac{1}{2}$時,不等式等價為$(x-\frac{1}{2})-(x+\frac{1}{2})≤3$,即-1≤3,恒成立,此時$-\frac{1}{2}≤x≤\frac{1}{2}$;
③當$x>\frac{1}{2}$時,不等式等價為$(x-\frac{1}{2})+(x+\frac{1}{2})≤3$,即2x≤3,$x≤\frac{3}{2}$,此時$\frac{1}{2}<x≤\frac{3}{2}$,
綜上不等式的解為$-\frac{3}{2}≤x≤\frac{3}{2}$,所以不等式的解集為$A=\{x\left|{-\frac{3}{2}≤x≤\frac{3}{2}}\right.\}$.
(2)函數(shù)的定義域為[1,5],且y>0,y=5×$\sqrt{x-1}$+$\sqrt{2}$×$\sqrt{5-x}$≤$\sqrt{{5}^{2}+(\sqrt{2})^{2}}$×$\sqrt{(\sqrt{x-1})^{2}+(\sqrt{5-x})^{2}}$=$\sqrt{27×4}$=6$\sqrt{3}$,
當且僅當$\sqrt{2}×\sqrt{x-1}=5×\sqrt{5-x}$時,等號成立,即$x=\frac{127}{27}$時,函數(shù)取最大值$6\sqrt{3}$
點評 本題考查了絕對值不等式的解法和柯西不等式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{19}{27}$ | B. | $\frac{27}{19}$ | C. | $\frac{11}{15}$ | D. | $\frac{15}{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -2 | C. | 1或-2 | D. | $-\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com