17.已知球O的表面積是36π,A,B是球面上的兩點,∠AOB=60°,C時球面上的動點,則四面體OABC體積V的最大值為$\frac{9\sqrt{3}}{4}$.

分析 球O的表面積為36π,可得半徑為3,當(dāng)CO垂直于面AOB時,三棱錐O-ABC的體積最大,即可求出三棱錐O-ABC的體積的最大值.

解答 解::球O的表面積為36π,半徑為3,
當(dāng)CO垂直于面AOB時,三棱錐O-ABC的體積最大
此時VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}×3×3×sin6{0}^{0}×CO$=$\frac{9\sqrt{3}}{4}$
故答案為:$\frac{9\sqrt{3}}{4}$,

點評 本題考查球的半徑,考查表面積的計算,確定CO垂直于面AOB時,三棱錐O-CAB的體積最大是關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出如圖所示的程序,執(zhí)行該程序時,若輸入的x為3,則輸出的y值是( 。
A.3B.6C.9D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.圓O的半徑為3,一條弦AB=4,P為圓O上任意一點,則$\overrightarrow{AB}$•$\overrightarrow{BP}$的取值范圍為( 。
A.[-16,0]B.[0,16]C.[-4,20]D.[-20,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為檢測空氣質(zhì)量,某市環(huán)保局隨機抽取了甲、乙兩地2016年20天PM2.5日平均濃度(單位:微克/立方米)監(jiān)測數(shù)據(jù),得到甲地PM2.5日平均濃度頻率分布直方圖和乙地PM2.5日平均濃度的頻數(shù)分布表.

乙地20天PM2.5日平均濃度頻數(shù)分布表
PM2.5日平均濃度(微克/立方米)[0,20](20,40](40,60](60,80](80,100]
頻數(shù)(天)23465
(1)根據(jù)乙地20天PM2.5日平均濃度的頻率分布表作出相應(yīng)的頻率分組直方圖,并通過兩個頻率分布直方圖比較兩地PM2.5日平均濃度的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可);
(2)通過調(diào)查,該市市民對空氣質(zhì)量的滿意度從高到低分為三個等級:
滿意度等級非常滿意滿意不滿意
PM2.5日平均濃度(微克/立方米)不超過20大于20不超過60超過60
記事件C:“甲地市民對空氣質(zhì)量的滿意度等級高于乙地市民對空氣質(zhì)量的滿意度等級”,假設(shè)兩地市民對空氣質(zhì)量滿意度的調(diào)查結(jié)果相互獨立,根據(jù)所給數(shù)據(jù),利用樣本估計總體的統(tǒng)計思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求事件C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an}滿足a1+a2=-1,a3=4,則a4+a5=( 。
A.17B.16C.15D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖1.在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2CD,DE⊥AB,沿DE將△AEDD折起到△A1ED的位置,連結(jié)A1B,A1C,M,N分別為A1C,BE的中點.如圖2.
(I )求證:DE丄A1B
(Ⅱ)求證:MN∥平面A1ED
(Ⅲ)在棱A1B上是否存在一點G.使得EG丄平面A1BC?若存在,求出 $\frac{{A}_{1}G}{GB}$的值:若不存在.說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個三棱錐的三視圖如圖(圖中小正方形的邊長為1),則這個三棱錐的體積是(  )
A.$\frac{32}{3}$B.8C.$\frac{20}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.in1320°的值是-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖是一個幾何體的三視圖,則該幾何體的體積為4+$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案