【題目】某組織在某市征集志愿者參加志愿活動,現(xiàn)隨機抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計出100名市民中愿意參加志愿活動和不愿意參加志愿活動的男女生比例情況,具體數(shù)據(jù)如圖所示.

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為愿意參與志愿活動與性別有關(guān)?

愿意

不愿意

總計

男生

女生

總計

(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動的市民中選取7名志愿者,再從中抽取2人作為隊長,求抽取的2人至少有一名女生的概率.

參考數(shù)據(jù)及公式:

.

【答案】(1) 沒有99%的把握認(rèn)為愿意參與志愿活動與性別有關(guān)(2)

【解析】試題分析:(1)完善列聯(lián)表,求出,然后判斷是否有的把握認(rèn)為愿意參與志愿活動與性別有關(guān)

(2)分層抽樣的方法從愿意參加志愿活動的市民中選取7名志愿者,則女生4人,男生3人,分別編號為從中任取兩人的所有基本事件共有21種情況,其中滿足兩人中至少有一人是女生的基本事件數(shù)有18個,從而求得抽取的2人至少有一名女生的概率.

試題解析:

(Ⅰ)

愿意

不愿意

總計

男生

15

45

60

女生

20

20

40

總計

35

65

100

計算,

所以沒有99%的把握認(rèn)為愿意參與志愿活動與性別有關(guān)

(Ⅱ)用分層抽樣的方法從愿意參加志愿活動的市民中選取7名志愿者,則女生4人,男生3人,分別編號為從中任取兩人的所有基本事件如下

,,

,共有21種情況,其中滿足兩人中至少有一人是女生的基本事件數(shù)有18個,抽取的2人至少有一名女生的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1111日有2000名網(wǎng)購者在某購物網(wǎng)站進(jìn)行網(wǎng)購消費(金額不超過1000元),其中女性1100名,男性900名.該購物網(wǎng)站為優(yōu)化營銷策略,根據(jù)性別采用分層抽樣的方法從這2000名網(wǎng)購者中抽取200名進(jìn)行分析,如表.(消費金額單位:元)

(1)計算的值在抽出的200名且消費金額在的網(wǎng)購者中隨機抽出2名發(fā)放網(wǎng)購紅包,求選出的2人均為女性的概率;

(2)若消費金額不低于600元的網(wǎng)購者為“網(wǎng)購達(dá)人”,低于600元的網(wǎng)購者為“非網(wǎng)購達(dá)人”,根據(jù)以上數(shù)據(jù)列列聯(lián)表并回答能否有的把握認(rèn)為“是否為網(wǎng)購達(dá)人與性別有關(guān)?”附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則三棱錐的體積為( )

A. 10 B. 20 C. 30 D. 60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)求曲線在點處的切線方程;

)求證:“”是“函數(shù)有且只有一個零點” 的充分必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項都是正數(shù)的數(shù)列的前項和為,且,數(shù)列滿足,.

(1)求數(shù)列、的通項公式;

(2)設(shè)數(shù)列滿足,求和;

(3)是否存在正整數(shù),,,使得,,成等差數(shù)列?若存在,求出所有滿足要求的,,,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.

(1)在極坐標(biāo)系下,設(shè)曲線與射線和射線分別交于,兩點,求的面積;

(2)在直角坐標(biāo)系下,直線的參數(shù)方程為為參數(shù)),直線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的焦點為F,準(zhǔn)線lx軸的交點為A.點C在拋物線E上,以C為圓心,為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點M,N

Ⅰ)若點C的縱坐標(biāo)為2,求;

Ⅱ)若,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為單調(diào)遞增數(shù)列,為其前項和,.

(1)求的通項公式;

(2)若為數(shù)列的前項和,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在北上廣深等十余大中城市,一款叫“一度用車”的共享汽車給市民們提供了一種新型的出行方式.2020年,懷化也將出現(xiàn)共享汽車,用戶每次租車時按行駛里程(1元/公里)加用車時間(0.1元/分鐘)收費,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內(nèi)的情況如下:

時間(分鐘)

次數(shù)

8

14

8

8

2

以各時間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費的時間視為用車時間,范圍為分鐘.

(Ⅰ)若李先生上、下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望;

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).

查看答案和解析>>

同步練習(xí)冊答案