【題目】車(chē)工劉師傅利用數(shù)控車(chē)床為某公司加工一種高科技易損零件,對(duì)之前加工的100個(gè)零件的加工時(shí)間進(jìn)行統(tǒng)計(jì),結(jié)果如下:
加工1個(gè)零件用時(shí)(分鐘) | 20 | 25 | 30 | 35 |
頻數(shù)(個(gè)) | 15 | 30 | 40 | 15 |
以加工這100個(gè)零件用時(shí)的頻率代替概率.
(1)求的分布列與數(shù)學(xué)期望;
(2)劉師傅準(zhǔn)備給幾個(gè)徒弟做一個(gè)加工該零件的講座,用時(shí)40分鐘,另外他打算在講座前、講座后各加工1個(gè)該零件作示范.求劉師傅講座及加工2個(gè)零件作示范的總時(shí)間不超過(guò)100分鐘的概率.
【答案】(1)分布列見(jiàn)解析,;(2)0.8575
【解析】
(1)根據(jù)題目所給數(shù)據(jù)求得分布列,并計(jì)算出數(shù)學(xué)期望.
(2)根據(jù)對(duì)立事件概率計(jì)算公式、相互獨(dú)立事件概率計(jì)算公式,計(jì)算出劉師傅講座及加工個(gè)零件作示范的總時(shí)間不超過(guò)分鐘的概率.
(1)的分布列如下:
20 | 25 | 30 | 35 | |
0.15 | 0.30 | 0.40 | 0.15 |
.
(2)設(shè),分別表示講座前、講座后加工該零件所需時(shí)間,事件表示“留師傅講座及加工兩個(gè)零件示范的總時(shí)間不超過(guò)100分鐘”,
則
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2021年我省將實(shí)施新高考,新高考“依據(jù)統(tǒng)一高考成績(jī)、高中學(xué)業(yè)水平考試成績(jī),參考高中學(xué)生綜合素質(zhì)評(píng)價(jià)信息”進(jìn)行人才選拔。我校2018級(jí)高一年級(jí)一個(gè)學(xué)習(xí)興趣小組進(jìn)行社會(huì)實(shí)踐活動(dòng),決定對(duì)某商場(chǎng)銷(xiāo)售的商品A進(jìn)行市場(chǎng)銷(xiāo)售量調(diào)研,通過(guò)對(duì)該商品一個(gè)階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷(xiāo)售量(單位:百件)與銷(xiāo)售價(jià)格(元/件)近似滿(mǎn)足關(guān)系式,其中為常數(shù)已知銷(xiāo)售價(jià)格為3元/件時(shí),每日可售出該商品10百件。
(1)求函數(shù)的解析式;
(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請(qǐng)你試確定該商品銷(xiāo)售價(jià)格的值,使該商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)(單位:百元)最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲袋中裝有2個(gè)白球,3個(gè)黑球,乙袋中裝有1個(gè)白球,2個(gè)黑球,這些球除顏色外完全相同.
(1)從兩袋中各取1個(gè)球,記事件:取出的2個(gè)球均為白球,求;
(2)每次從甲、乙兩袋中各取2個(gè)球,若取出的白球不少于2個(gè)就獲獎(jiǎng)(每次取完后將球放回原袋),共取了3次,記獲獎(jiǎng)次數(shù)為,寫(xiě)出的分布列并求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若為的極小值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的離心率為,且焦點(diǎn)到漸近線(xiàn)的距離為.
(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)若以為斜率的直線(xiàn)與雙曲線(xiàn)相交于兩個(gè)不同的點(diǎn),,且線(xiàn)段的垂直平分線(xiàn)與兩坐標(biāo)軸圍成的三角形的面積為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:過(guò)點(diǎn)A,兩個(gè)焦點(diǎn)為(-1,0),(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線(xiàn)AE的斜率與AF的斜率互為相反數(shù),證明直線(xiàn)EF的斜率為定值,并求出這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長(zhǎng),r為三角形內(nèi)切圓半徑,利用類(lèi)比推理,可以得出四面體的體積為 ( )
A. V=abc B. V=Sh
C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個(gè)面的面積,r為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是r)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:函數(shù)在定義域上單調(diào)遞增;命題:在區(qū)間上恒成立.
(1)如果命題為真命題,求實(shí)數(shù)的值或取值范圍;
(2)命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是為菱形,在平面內(nèi)的射影恰為線(xiàn)段的中點(diǎn).
(1)求證:;
(2)若,,求二面角的平面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com