2.已知二次函數(shù)f(x)=ax2+2ax+1在區(qū)間[-2,3]上的最大值為5,則a的值為$\frac{4}{15}$或-4.

分析 二次函數(shù)f(x)=ax2+2ax+1圖象的對稱軸為x=-1,分a<0和a>0兩種情況,求出滿足條件的a值,可得答案.

解答 解:二次函數(shù)f(x)=ax2+2ax+1圖象的對稱軸為x=-1,
當(dāng)a<0時(shí),在區(qū)間[-2,3]上,x=-1時(shí),函數(shù)最大值-a+1=5,解得:a=-4,
當(dāng)a>0時(shí),在區(qū)間[-2,3]上,x=3時(shí),函數(shù)最大值15a+1=5,解得:a=$\frac{4}{15}$,
綜上可得:a的值為$\frac{4}{15}$或-4;
故答案為:$\frac{4}{15}$或-4

點(diǎn)評 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線y=-x+1與橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)相交于A、B兩點(diǎn).
(1)若橢圓的離心率為$\frac{{\sqrt{3}}}{3}$,線段AB的長為$\frac{{8\sqrt{3}}}{5}$,求橢圓的方程;
(2)若向量$\overrightarrow{OA}$與向量$\overrightarrow{OB}$互相垂直(其中O為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離心率e∈[$\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}$]時(shí),求橢圓的長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.同時(shí)拋擲兩粒骰子,記事件A:向上的點(diǎn)數(shù)是相鄰的兩個(gè)整數(shù).
(1)列出試驗(yàn)的所有基本事件,并求事件A發(fā)生的概率P(A);
(2)某人用計(jì)算機(jī)做隨機(jī)模擬實(shí)驗(yàn),用Excel軟件的隨機(jī)函數(shù)randbetween(1,6)得到36組隨機(jī)數(shù)如表:
第1組22第13組56第25組26
第2組65第14組14第62組63
第3組13第15組23第27組66
第4組53第16組52第28組12
第5組52第17組16第29組61
第6組45第18組46第30組41
第7組34第19組31第31組36
第8組65第20組42第32組43
第9組34第21組33第33組56
第10組64第22組44第34組16
第11組12第23組62第35組42
第12組15第24組52第36組31
試求事件A的頻率fn(A),比較fn(A)與P(A),并用統(tǒng)計(jì)的觀點(diǎn)解釋這一現(xiàn)象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}a-2x,x≤0\\{log_4}x,x>0\end{array}$且f(f($\frac{1}{4}$))=5,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sinx-xcosx.
(I)討論f(x)在(0,2π)上的單調(diào)性;
(II)求證:當(dāng)x∈(0,$\frac{π}{2}$)時(shí),f(x)-$\frac{1}{3}$x3<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=exsinx的圖象在點(diǎn)(0,f(0))處的切線的傾斜角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,正方形ABCD中,E,F(xiàn)分別是BC,CD的中點(diǎn),M是EF的中點(diǎn),現(xiàn)在沿AE,AF及EF把這個(gè)正方形折成一個(gè)四面體,使B,C,D三點(diǎn)重合,重合后的點(diǎn)記為P,則在四面體A-PEF中必有( 。
A.PM⊥△AEF所在平面B.AM⊥△PEF所在平面C.PF⊥△AEF所在平面D.AP⊥△PEF所在平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-3x.則方程f(x)-x+3=0的解集( 。
A.{-2-$\sqrt{7}$,1,3}B.{2-$\sqrt{7}$,1,3}C.{-3,-1,1,3}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+1,則f(-3)=( 。
A.-10B.10C.-4D.4

查看答案和解析>>

同步練習(xí)冊答案