9.若函數(shù)f(x)=-x+b的圖象與函數(shù)g1(x)=x2(0≤x≤1)的圖象相交于點A,與函數(shù)g2(x)=$\sqrt{x}$(0≤x≤1)的圖象相交于點B,求|AB|的最大值.

分析 函數(shù)g1(x)=x2(0≤x≤1)的圖象與函數(shù)g2(x)=$\sqrt{x}$(0≤x≤1)的圖象關(guān)于直線y=x對稱,故當(dāng)函數(shù)f(x)=-x+b的圖象過原點與(1,1)點的中點時,|AB|取最大值,進而得到答案.

解答 解:函數(shù)g1(x)=x2(0≤x≤1)的圖象與函數(shù)g2(x)=$\sqrt{x}$(0≤x≤1)的圖象關(guān)于直線y=x對稱,
故當(dāng)函數(shù)f(x)=-x+b的圖象過原點與(1,1)點的中點時,|AB|取最大值,
此時b=1,
由$\left\{\begin{array}{l}y=-x+1\\ y={x}^{2}\end{array}\right.$得:A點坐標(biāo)為:($\frac{-1+\sqrt{5}}{2}$,$\frac{3-\sqrt{5}}{2}$),
由$\left\{\begin{array}{l}y=-x+1\\ y=\sqrt{x}\end{array}\right.$得:B點坐標(biāo)為:($\frac{3-\sqrt{5}}{2}$,$\frac{-1+\sqrt{5}}{2}$),
此時|AB|=$\sqrt{10}-2\sqrt{2}$,
故|AB|的最大值為$\sqrt{10}-2\sqrt{2}$.

點評 本題考查的知識點是函數(shù)的圖象,函數(shù)的最值及其幾何意義,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\frac{{x}^{2}+1}{x-1}$(x>1)的最小值是2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若Sn=cos$\frac{π}{7}$+cos$\frac{2π}{7}$+…+cos$\frac{nπ}{7}$(n∈N*),則在S1,S2,…,S100中,正數(shù)的個數(shù)是( 。
A.16B.72C.37D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=2x3+x2-6x-3的零點為-$\frac{1}{2}$,$\sqrt{3}$,-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x+$\frac{a}{x}$,且f(1)=10.
(1)求a的值;
(2)判斷f(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC得面積為$\frac{\sqrt{3}}{2}$$\overrightarrow{AB}$•$\overrightarrow{AC}$,且AC=2,AB=3.
(1)求$\frac{sinA}{sinB}$;
(2)若點D為AB邊上一點,且△ACD與△ABC的面積之比為1:3.
①求證:AB⊥CD;
②求△ACD內(nèi)切圓得半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(Ⅰ)當(dāng)每輛車的月租金定為4000元時,能租出多少輛車?
(Ⅱ)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)的定義域為$({-\frac{1}{2},1})$,則函數(shù)$f({\frac{1}{x}})$的定義域為(  )
A.(1,+∞)B.(-2,1)C.(0,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若冪函數(shù)f(x)=xm的圖象過點(2,$\frac{\sqrt{2}}{2}$),則f(4)的值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案