18.甲、乙兩名同學(xué)參加一項(xiàng)射擊游戲,兩人約定,其中任何一人毎射擊一次,擊中目標(biāo)得2分,未擊中目標(biāo)得0分,若甲、乙兩名同學(xué)射擊的命中率分別為$\frac{2}{5}$和p,且甲、乙兩人各射擊一次所得分?jǐn)?shù)之和為2的概率為$\frac{9}{20}$,假設(shè)甲、乙兩人射擊互不影響.
(1)若乙射擊兩次,求其得分為2的概率;
(2)記甲、乙兩人各射擊一次所得分?jǐn)?shù)之和為X,求X的分布列和數(shù)學(xué)期望.

分析 (1)設(shè)“甲射擊一次,擊中目標(biāo)”為事件A,“乙射擊一次,擊中目標(biāo)”為事件B,由題意知P(A)=$\frac{2}{5}$,P(B)=p,由此利用互斥事件概率加法公式和相互獨(dú)立事件概率乘法公式能求出p=$\frac{1}{4}$.從而能求出乙射擊兩次,求其得分為2的概率.
(2)X的取值分別為0,2,4,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.

解答 解:(1)設(shè)“甲射擊一次,擊中目標(biāo)”為事件A,
“乙射擊一次,擊中目標(biāo)”為事件B,
由題意知P(A)=$\frac{2}{5}$,P(B)=p,
∵甲、乙兩人各射擊一次所得分?jǐn)?shù)之和為2的概率為$\frac{9}{20}$,
∴P(A)P($\overline{B}$)+P($\overline{A}$)P(B)=$\frac{2}{5}(1-p)+\frac{3}{5}p$=$\frac{9}{20}$,
解得p=$\frac{1}{4}$.
∴乙射擊兩次,求其得分為2的概率:
P=2×[p(1-p)]=2($\frac{1}{4}×\frac{3}{4}$)=$\frac{3}{8}$.
(2)X的取值分別為0,2,4,
P(X=0)=$\frac{3}{5}×\frac{3}{4}=\frac{9}{20}$,
P(X=2)=$\frac{9}{20}$,
P(X=4)=$\frac{2}{5}×\frac{1}{4}=\frac{1}{10}$=$\frac{1}{10}$,
∴X的分布列為:

 X 0 2
 P $\frac{9}{20}$ $\frac{9}{20}$ $\frac{1}{10}$
EX=$0×\frac{9}{20}+2×\frac{9}{20}+4×\frac{1}{10}$=$\frac{13}{10}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法,是中檔題,在歷年高考中都是必考題型之一,解題時(shí)要注意互斥事件概率加法公式和相互獨(dú)立事件概率乘法公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.點(diǎn)(1,2)到直線y=x-2的距離為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知$\overrightarrow a=(3,-4)$,$\overrightarrow b=(cosα,sinα)$,則$|{\overrightarrow a+2\overrightarrow b}|$的取值范圍是( 。
A.[1,4]B.[2,6]C.[3,7]D.$[2\sqrt{2},4\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某小學(xué)星期一每班都排6節(jié)課,上午4節(jié)、下午2節(jié),若該校王老師在星期一這天要上3個(gè)班的課,每班l(xiāng)節(jié),且不能連上3節(jié)課(第4節(jié)和第5節(jié)不算連上),那么王老師星期一這天課的排法共有( 。
A.108種B.102種C.18種D.20種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示的幾何體中,四邊形PDCE為矩形,ABCD為直角梯形,且∠BAD=∠ADC=90°,平面PDCE⊥平面ABCD,AB=AD=$\frac{1}{2}$CD=1,PD=$\sqrt{2}$.
(Ⅰ)若M為PA的中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)求平面PAD與平面PBC所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A-EF-C是二面角,求直線AE與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)方程.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義在R上的函數(shù)y=f(x)為減函數(shù),且函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),若f(x2-2x)+f(2b-b2)≤0,且0≤x≤2,則x-b的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知5件產(chǎn)品中有2件次品,現(xiàn)逐一檢測(cè),直至能確定所有次品為止,記檢測(cè)的次數(shù)為ξ,則Eξ=( 。
A.3B.$\frac{7}{2}$C.$\frac{18}{5}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案