分析:(1)根據(jù)題意,可知f′(-1)=0,列出方程求解,即可得到a的值;
(2)令導(dǎo)函數(shù)f′(x)=0,求出方程的根,利用導(dǎo)數(shù)判斷根左右的單調(diào)性,再根據(jù)極值的定義,即可求得函數(shù)f(x)的極值.
解答:解:(1)∵函數(shù)
f(x)=ax3+x2+2x,
∴f′(x)=3ax
2+x+2,
∵函數(shù)
f(x)=ax3+x2+2x在x=-1處取得極值,
∴f′(-1)=0,
∴3a-1+2=0,
∴
a=-;
(2)由(1)可得,
f(x)=-x3+x2+2x,
∴f′(x)=-x
2+x+2,
令f′(x)=0,解得x=-1或x=2,
當(dāng)x<-1時(shí),f′(x)<0,則f(x)在(-∞,-1)上單調(diào)遞減,
當(dāng)-1<x<2時(shí),f′(x)>0,則f(x)在(-1,2)上單調(diào)遞增,
當(dāng)x>2時(shí),f′(x)<0,則f(x)在(2,+∞)上單調(diào)遞減,
∴當(dāng)x=-1時(shí),f(x)有極小值為
f(-1)=-,
當(dāng)x=2時(shí),f(x)有極大值為
f(2)=,
∴函數(shù)f(x)的極小值為
-,極大值為
.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值,解題時(shí)要注意運(yùn)用極值點(diǎn)必定是導(dǎo)函數(shù)對(duì)應(yīng)方程的根,而導(dǎo)函數(shù)對(duì)應(yīng)方程的根不一定是極值點(diǎn).利用導(dǎo)數(shù)求函數(shù)極值的步驟是:先求導(dǎo)函數(shù),令導(dǎo)函數(shù)等于0,求出方程的根,確定函數(shù)在方程的根左右的單調(diào)性,根據(jù)極值的定義,確定極值點(diǎn)和極值.過(guò)程中要注意運(yùn)用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,一般導(dǎo)數(shù)的正負(fù)對(duì)應(yīng)著函數(shù)的單調(diào)性.屬于中檔題.