已知,

設(shè).

(Ⅰ)求的表達(dá)式;

(Ⅱ)若函數(shù)和函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,

(ⅰ)求函數(shù)的解析式;

(ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)l的取值范圍.

 

【答案】

Ⅰ);(Ⅱ)函數(shù)的解析式為= -sin2x+2sinx ;

(Ⅲ)。

【解析】

試題分析:(Ⅰ)

   4分

(Ⅱ)設(shè)函數(shù)的圖象上任一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為

,  .5分

∵點(diǎn)在函數(shù)的圖象上

,即

∴函數(shù)的解析式為= -sin2x+2sinx      7分

(Ⅲ)

設(shè)   9分

則有

當(dāng)時(shí),(t)=4t+1在[-1,1]上是增函數(shù),∴λ= -1   11分

當(dāng)時(shí),對(duì)稱軸方程為直線.

ⅰ) 時(shí),,解得

ⅱ)當(dāng)時(shí),,解得

綜上:.

實(shí)數(shù)l的取值范圍為  14分

考點(diǎn):本題主要考查平面向量的坐標(biāo)運(yùn)算,三角函數(shù)和差倍半公式的應(yīng)用,二次函數(shù)圖象和性質(zhì)。

點(diǎn)評(píng):典型題,為研究三角函數(shù)的圖象和性質(zhì),往往需要將函數(shù)“化一”,這是?碱}型。首先運(yùn)用“三角公式”進(jìn)行化簡(jiǎn),為進(jìn)一步解題奠定了基礎(chǔ)。(3)小題利用“換元思想”,轉(zhuǎn)化成二次函數(shù)在閉區(qū)間的單調(diào)性研究問(wèn)題,根據(jù)圖象對(duì)稱軸受到的限制,求得實(shí)數(shù)l的取值范圍。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知問(wèn)題“設(shè)正數(shù)x,y滿足
1
x
+
2
y
=1
,求x+y的最值”有如下解法;
設(shè)
1
x
=cos2α,
2
y
=sin2α,α∈(0,
π
2
)

則x=sec2α=1+tan2α,y=2csc2α=2(1+cot2α),
所以,x+y=3+tan2α+2cot2α=3+tan2+
2
tan2α
≥3+2
2
,等號(hào)成立當(dāng)且僅當(dāng)tan2α=
2
tan2α
,即tan2α=
2
,此時(shí)x=1+
2
,y=2+
2

(1)參考上述解法,求函數(shù)y=
1-x
+2
x
的最大值.
(2)求函數(shù)y=2
x+1
-
x
(x≥0)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù),,設(shè)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若以函數(shù)圖像上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三第一次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:解答題

在極坐標(biāo)系中,已知曲線

設(shè)交于點(diǎn)

(I)求點(diǎn)的極坐標(biāo);

(II)若動(dòng)直線過(guò)點(diǎn),且與曲線交于兩個(gè)不同的點(diǎn)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省度高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

(14分)已知,設(shè)命題函數(shù)在R上單調(diào)遞增;命題不等式對(duì)任意恒成立。若為假,為真,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省臺(tái)州市四校高三第一次聯(lián)考理科數(shù)學(xué)試卷 題型:填空題

已知函數(shù),,設(shè),且函數(shù)的零點(diǎn)均在區(qū)間內(nèi),則的最小值為____▲_____.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案