【題目】已知F為雙曲線C: (a>0,b>0)的右焦點,l1 , l2為C的兩條漸近線,點A在l1上,且FA⊥l1 , 點B在l2上,且FB∥l1 , 若 ,則雙曲線C的離心率為( )
A.
B.
C. 或
D. 或
科目:高中數(shù)學 來源: 題型:
【題目】設p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實數(shù)x滿足 <0.
(1)若a=1,且p∨q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)直線l的極坐標方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓 (a>b>0)的左右頂點分別是A(﹣ ,0),B( ,0),離心率為 .設點P(a,t)(t≠0),連接PA交橢圓于點C,坐標原點是O.
(Ⅰ)證明:OP⊥BC;
(Ⅱ)若三角形ABC的面積不大于四邊形OBPC的面積,求|t|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某保險公司針對企業(yè)職工推出一款意外險產品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為A、B、C三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).
工種類別 | A | B | C |
賠付頻率 |
|
|
|
(Ⅰ)根據(jù)規(guī)定,該產品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖直三棱柱ABC﹣A1B1C1 中AC=2AA1 , AC⊥BC,D、E 分別為A1C1、AB 的中點.求證:
(1)AD⊥平面BCD
(2)A1E∥平面BCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長為2的正三角形△ABC中,D為BC的中點,E,F(xiàn)分別在邊CA,AB上.
(1)若 ,求CE的長;
(2)若∠EDF=60°,問:當∠CDE取何值時,△DEF的面積最?并求出面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com