f(x)是定義在[-b,b](b>3)上的偶函數(shù),且f(3)>f(1),則下列各式一定成立的是( 。
A、f(0)<f(b)
B、f(3)>f(2)
C、f(-1)<f(3)
D、f(2)>f(0)
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)偶函數(shù)的性質(zhì)定義求解f(x)是定義在[-b,b](b>3)上的偶函數(shù),f(-x)=f(x),由f(3)>f(1),f(3)>f(-1)成立,
解答: 解:∵f(x)是定義在[-b,b](b>3)上的偶函數(shù),
∴f(-x)=f(x),
∵f(3)>f(1),
∴f(3)>f(-1),
故選:C
點(diǎn)評:本題考查了偶函數(shù)的性質(zhì)定義求解,難度不大,屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=4sin(2x+
π
3
),(x∈R)有下列命題:
①y=f(x)是以2π為最小正周期的周期函數(shù); 
②y=f(x)可改寫為y=4cos(2x-
π
6
);
③y=f(x)的圖象關(guān)于點(diǎn)(-
π
6
,0)對稱;   
④y=f(x)的圖象關(guān)于直線x=-
12
對稱;
⑤y=|f(x)|是以π為最小正周期的周期函數(shù).
其中正確的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x+3(x≥10)
f(f(x+5))(x≤10)
,則f(5)的值是( 。
A、24B、21C、18D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行下面的程序框圖,若輸出的結(jié)果是2,則①處應(yīng)填入的是( 。
A、x=2B、x=1
C、b=2D、a=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=0.1 
1
3
,b=log0.12,c=30.1,d=lg
1
3
,那么a,b,c,d的大小關(guān)系為(  )
A、b>c>a>d
B、c>a>b>d
C、c>a>d>b
D、d>c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義◇的運(yùn)算為a◇b=
ba≥b
ab>a
,則f(x)=3x◇3-x的值域?yàn)椋ā 。?/div>
A、(0,1]
B、[1,+∞)
C、(0,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,角A為鈍角,且sinA=
3
5
,點(diǎn)P、Q分別是在角A的兩邊上不同于點(diǎn)A的動點(diǎn).
(1)設(shè)∠APQ=α.∠AQP=β.且cosα=
12
13
.求sin(2α+β)的值;
(2)若PQ=3
5
,求△APQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
-x2-3x,x<0
2x-2,x≥0
,則f(f(-1))=( 。
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x+2≥0},集合B={y|y=1-2x,x≤1},則∁AB=( 。
A、(-∞,-2]
B、(-∞,-2]∪[1,+∞)
C、(-∞,-1)
D、(-∞,-1)∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案