【題目】六個面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于(

A.2(AB2+AD2+AA12
B.3(AB2+AD2+AA12
C.4(AB2+AD2+AA12
D.4(AB2+AD2

【答案】C
【解析】解:如圖,平行六面體的各個面以及對角面都是平行四邊形,
因此,在平行四邊形ABCD中,AC2+BD2=2(AB2+AD2)…①;
在平行四邊形ACC1A1中,A1C2+AC12=2(AC2+AA12)…②;
在平行四邊形BDD1B1中,B1D2+BD12=2(BD2+BB12)…③;
②、③相加,得A1C2+AC12+B1D2+BD12=2(AC2+AA12)+2(BD2+BB12)…④
將①代入④,再結(jié)合AA1=BB1得,AC12+B1D2+A1C2+BD12=4(AB2+AD2+AA12
故選C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解棱柱的結(jié)構(gòu)特征的相關(guān)知識,掌握兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是自然對數(shù)的底數(shù), , , .

(1)設(shè),求的極值;

(2)設(shè),求證:函數(shù)沒有零點(diǎn);

(3)若,設(shè),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( x , 其反函數(shù)為y=g(x).
(1)若g(mx2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在實(shí)數(shù)m>n>3,使得函數(shù)y=h(x)的定義域?yàn)閇n,m],值域?yàn)閇n2 , m2],若存在,求出m、n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: 的離心率是 ,其一條準(zhǔn)線方程為x=
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)雙曲線C的左右焦點(diǎn)分別為A,B,點(diǎn)D為該雙曲線右支上一點(diǎn),直線AD與其左支交于點(diǎn)E,若 ,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若是函數(shù)是極值點(diǎn),1是函數(shù)零點(diǎn),求實(shí)數(shù),的值和函數(shù)的單調(diào)區(qū)間;

(Ⅱ) 若對任意,都存在為自然對數(shù)的底數(shù)),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時,可全部租出,當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.,當(dāng)每輛車的月租金定為x元時,租賃公司的月收益為y元,
(1)試寫出x,y的函數(shù)關(guān)系式(不要求寫出定義域);
(2)租賃公司某月租出了88輛車,求租賃公司的月收益多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)【選修4-5:不等式選講】

已知函數(shù).

)求的解集;

)設(shè)函數(shù), ,若對任意的都成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)關(guān)于的方程個不同的實(shí)數(shù)解,則的所有可能的值為(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,若函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)若恒成立,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案