1.下列給出函數(shù)f(x)與g(x)的各組中,是同一個關于x的函數(shù)的是( 。
A.f(x)=x-1,g(x)=$\frac{x^2}{x}$-1B.f(x)=2x-1,g(x)=2x+1
C.f(x)=x2,g(x)=$\root{3}{{x}^{6}}$D.f(x)=1,g(x)=x0

分析 根據(jù)兩個函數(shù)的定義域相同,對應關系也相同,判斷它們是同一函數(shù)即可

解答 解:對于A:f(x)=x-1的定義域為R,而g(x)=$\frac{x^2}{x}$-1的定義域為{x∈R|x≠0},它們的定義域不同,∴不是同一函數(shù);
對于B:f(x)=2x-1,g(x)=2x+1它們的定義域都是R,但對應關系不同,∴不是同一函數(shù);
對于C:f(x)=x2的定義域為R,g(x)=$\root{3}{{x}^{6}}$=x2的定義域為R,它們的定義域相同,對應關系也相同,∴是同一函數(shù);
對于D:f(x)=1的定義域為R,而g(x)=x0的定義域為{x∈R|x≠0},它們的定義域不同,∴不是同一函數(shù);
故選C.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的問題,是基礎題目

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=$\sqrt{3}$x+2cosx,x∈(0,π)上單調(diào)減區(qū)間為( 。
A.($\frac{π}{3}$,$\frac{2π}{3}$)B.($\frac{π}{6}$,$\frac{5π}{6}$)C.(0,$\frac{π}{3}$),($\frac{2π}{3}$,π)D.(0,$\frac{π}{6}$),($\frac{5π}{6}$,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=3(x-2)2+5,且|x1-2|>|x2-2|,則f(x1),f(x2)的大小關系是f(x1)>f(x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+t}\\{y=1+t}\end{array}\right.$,(t為參數(shù)),曲線C的普通方程為(x-2)2+(y-1)2=5,點P的極坐標為(2$\sqrt{2}$,$\frac{7π}{4}$).
(1)求直線l的普通方程和曲線C的極坐標方程;
(2)若將直線l向右平移2個單位得到直線l′,設l′與C相交于A,B兩點,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設數(shù)列{an}的前n項和為Sn,已知a1=1,s2=2,且an+2=3Sn-Sn+1+3(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{lo{g}_{3}{a}_{2n+1}}{{a}_{2n}}$,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.“α=2kπ+$\frac{π}{3}$(k∈Z)”是“tanα=$\sqrt{3}$”的充分不必要條件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asinC=$\sqrt{3}$ccosA.
(1)求角A的大;
(2)若a=$\sqrt{13}$,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知f(x)=$\frac{4^x}{{{4^x}+{2}}}$,x∈R.
(1)求證:對一切實數(shù)x,f(x)=f(1-x)恒為定值.
(2)計算:f(-6)+f(-5)+f(-4)+f(-3)+…+f(0)+…+f(6)+f(7).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在數(shù)列{an}中,已知a1=-1,且an+1=2an+3n-4(n∈N*).
(1)求證:數(shù)列{an+1-an+3}是等比數(shù)列;
 (2)求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習冊答案