A. | 5 | B. | 7 | C. | 2$\sqrt{13}$ | D. | $\sqrt{19}$ |
分析 作AC⊥x軸于C,BD⊥x軸于D,則$\overrightarrow{AB}$=$\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DB}$,利用平方法即可得到結(jié)論.
解答 解:作AC⊥x軸于C,BD⊥x軸于D,
則$\overrightarrow{AB}$=$\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DB}$,
∵A(-1,3),B(3,-3),∴C(-1,0),D(3,0),
∴$|\overrightarrow{AC}|=3$,|$\overrightarrow{CD}$|=4,|$\overrightarrow{DB}$|=3,
∵沿x軸把坐標(biāo)平面折成60°的二面角,
∴<$\overrightarrow{CA}$,$\overrightarrow{DB}$>=60°,且$\overrightarrow{AC}•\overrightarrow{CD}$=0,$\overrightarrow{CD}•\overrightarrow{DB}$=0,
$\overrightarrow{DB}•\overrightarrow{AC}$=3×3×cos120°=-$\frac{9}{2}$,
∴$\overrightarrow{AB}$2=($\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DB}$)2
=$\overrightarrow{AC}$2+$\overrightarrow{CD}$2+$\overrightarrow{DB}$2+2$\overrightarrow{AC}$•$\overrightarrow{CD}$+2$\overrightarrow{CD}$•$\overrightarrow{DB}$+2$\overrightarrow{AC}$•$\overrightarrow{DB}$
=9+9+16+2×(-$\frac{9}{2}$)=25,
∴|$\overrightarrow{AB}$|=5.
故選:A.
點(diǎn)評(píng) 本題考查線段長(zhǎng)的求法,利用向量法得到$\overrightarrow{AB}$=$\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DB}$,利用向量數(shù)量積和長(zhǎng)度之間的關(guān)系進(jìn)行轉(zhuǎn)化求解是解決本題的關(guān)鍵.注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3π | B. | 4π | C. | 5π | D. | 6π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com