A. | $\sqrt{10}$ | B. | $\frac{\sqrt{17}}{3}$ | C. | $\frac{\sqrt{17}}{2}$ | D. | $\frac{\sqrt{10}}{2}$ |
分析 由$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),知E為PF的中點,令右焦點為F′,則O為FF′的中點,則|PF′|=2|OE|=$\frac{2}{3}$a,運用雙曲線的定義可得|PF|=|PF′|+2a=$\frac{8}{3}$a,在Rt△PFF′中,|PF|2+|PF′|2=|FF′|2,由此能求出離心率.
解答 解由$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),
可得E為PF的中點,令右焦點為F′,
O為FF′的中點,
則|PF′|=2|OE|=$\frac{2}{3}$a,
由E為切點,
可得OE⊥PF,
即有PF′⊥PF,
由雙曲線的定義可得|PF|-|PF′|=2a,
即|PF|=|PF′|+2a=$\frac{8}{3}$a,
在Rt△PFF′中,|PF|2+|PF′|2=|FF′|2,
即$\frac{64}{9}$a2+$\frac{4}{9}$a2=4c2,即c=$\frac{\sqrt{17}}{3}$a,
則離心率e=$\frac{c}{a}$=$\frac{\sqrt{17}}{3}$.
故選:B.
點評 本題考查雙曲線的離心率的求法,注意運用直線和圓相切的性質,以及雙曲線的定義和中位線定理,勾股定理,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,2) | C. | (0,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{15}{28}$ | D. | $\frac{19}{28}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com