A. | $\sqrt{10}$ | B. | $\frac{\sqrt{17}}{3}$ | C. | $\frac{\sqrt{17}}{2}$ | D. | $\frac{\sqrt{10}}{2}$ |
分析 由$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),知E為PF的中點(diǎn),令右焦點(diǎn)為F′,則O為FF′的中點(diǎn),則|PF′|=2|OE|=$\frac{2}{3}$a,運(yùn)用雙曲線的定義可得|PF|=|PF′|+2a=$\frac{8}{3}$a,在Rt△PFF′中,|PF|2+|PF′|2=|FF′|2,由此能求出離心率.
解答 解由$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),
可得E為PF的中點(diǎn),令右焦點(diǎn)為F′,
O為FF′的中點(diǎn),
則|PF′|=2|OE|=$\frac{2}{3}$a,
由E為切點(diǎn),
可得OE⊥PF,
即有PF′⊥PF,
由雙曲線的定義可得|PF|-|PF′|=2a,
即|PF|=|PF′|+2a=$\frac{8}{3}$a,
在Rt△PFF′中,|PF|2+|PF′|2=|FF′|2,
即$\frac{64}{9}$a2+$\frac{4}{9}$a2=4c2,即c=$\frac{\sqrt{17}}{3}$a,
則離心率e=$\frac{c}{a}$=$\frac{\sqrt{17}}{3}$.
故選:B.
點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用直線和圓相切的性質(zhì),以及雙曲線的定義和中位線定理,勾股定理,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,2) | C. | (0,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{15}{28}$ | D. | $\frac{19}{28}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com