【題目】判斷下列命題是全稱(chēng)命題還是存在性命題,并判斷其真假:
(1)對(duì)任意x∈R,zx>0(z>0);
(2)對(duì)任意非零實(shí)數(shù)x1,x2,若x1<x2,則;
(3)α∈R,使得sin(α+)=sin α;
(4)x∈R,使得x2+1=0.
【答案】(1))是全稱(chēng)命題,真命題;(2)是全稱(chēng)命題,假命題;(3)是存在性命題,真命題;(4)是存在性命題,假命題.
【解析】試題分析:(1)任意型是全稱(chēng)命題,根據(jù)指數(shù)函數(shù)性質(zhì)判斷真假(2)任意型是全稱(chēng)命題,根據(jù)倒數(shù)性質(zhì)得真假(3)存在型是存在性命題,根據(jù)三角函數(shù)性質(zhì)判斷真假(4)存在型是存在性命題,根據(jù)二次方程解判斷真假
試題解析:解:(1)(2)是全稱(chēng)命題,(3)(4)是存在性命題.
(1)∵zx>0(z>0)恒成立,
∴命題(1)是真命題.
(2)存在x1=-1,x2=1,x1<x2,但,
∴命題(2)是假命題.
(3)當(dāng)α=時(shí),sin(α+)=sin α成立,
∴命題(3)為真命題.
(4)對(duì)任意x∈R,x2+1>0,∴命題(4)是假命題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)矩形ABCD(AB>AD)的周長(zhǎng)為24,把△ABC沿AC向△ADC折疊,AB折過(guò)去后交DC于點(diǎn)P,設(shè)AB=x,求△ADP的最大面積及相應(yīng)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí), 求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知袋中裝有大小相同的2個(gè)白球、2個(gè)紅球和1個(gè)黃球.一項(xiàng)游戲規(guī)定:每個(gè)白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個(gè)球,將3個(gè)球?qū)?yīng)的分值相加后稱(chēng)為該局的得分,計(jì)算完得分后將球放回袋中.當(dāng)出現(xiàn)第局得分()的情況就算游戲過(guò)關(guān),同時(shí)游戲結(jié)束,若四局過(guò)后仍未過(guò)關(guān),游戲也結(jié)束.
(1)求在一局游戲中得3分的概率;
(2)求游戲結(jié)束時(shí)局?jǐn)?shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)試判斷函數(shù)的零點(diǎn)個(gè)數(shù);
(Ⅱ)若函數(shù)在上為增函數(shù),求整數(shù)的最大值.
(可能要用的數(shù)據(jù): , , ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中, 分別是、、的中點(diǎn), 平面, ,二面角為.
(1)證明: ;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知橢圓C: +y2=1,以橢圓的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0).設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求 的最小值;
(2)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:丨OR丨丨OS丨為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,a≠1.設(shè)命題p:函數(shù)y=loga(x+1)在(0,+∞)內(nèi)單調(diào)遞減;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).若p或q為真,p且q為假,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線: 與橢圓: 在第一象限的交點(diǎn)為, 為坐標(biāo)原點(diǎn), 為橢圓的右頂點(diǎn), 的面積為.
(Ⅰ)求拋物線的方程;
(Ⅱ)過(guò)點(diǎn)作直線交于、 兩點(diǎn),射線、分別交于、兩點(diǎn),記和的面積分別為和,問(wèn)是否存在直線,使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com