13.已知函數(shù)f(x)=|x+2|-m,m∈R,且f(x)≤0的解集為[-3,-1]
(1)求m的值;
(2)設(shè) a、b、c 為正數(shù),且 a+b+c=m,求.$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$的最大值.

分析 (1)由題意,|x+2|≤m?$\left\{\begin{array}{l}{m≥0}\\{-m-2≤x≤m-2}\end{array}\right.$,由f(x)≤0的解集為[-3,-1],得$\left\{\begin{array}{l}{-m-2=-3}\\{m-2=-1}\end{array}\right.$,即可求實(shí)數(shù)m的值;
(2)由(1)得:a+b+c=1,再利用柯西不等式求得$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$的最小值.

解答 解:(1)由題意,|x+2|≤m?$\left\{\begin{array}{l}{m≥0}\\{-m-2≤x≤m-2}\end{array}\right.$,由f(x)≤0的解集為[-3,-1],得$\left\{\begin{array}{l}{-m-2=-3}\\{m-2=-1}\end{array}\right.$,解得m=1;
(2)由(1)可得a+b+c=1,
由柯西不等式可得(3a+1+3b+1+3c+1)(12+12+12]≥($\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$)2,
∴.$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$$≤3\sqrt{2}$
當(dāng)且僅當(dāng).$\sqrt{3a+1}$=$\sqrt{3b+1}$=$\sqrt{3c+1}$,即a=b=c=$\frac{1}{3}$時(shí)等號成立,
∴$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$的最小值為3$\sqrt{2}$.

點(diǎn)評 本題主要考查絕對值三角不等式、柯西不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知復(fù)數(shù)z=(2+3i)i,在復(fù)平面內(nèi)與復(fù)數(shù)z對應(yīng)的點(diǎn)的坐標(biāo)為(-3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x+$\frac{a^2}{x}$,g(x)=-x-ln(-x)其中a≠0,
(1)若x=1是函數(shù)f(x)的極值點(diǎn),求實(shí)數(shù)a的值及g(x)的單調(diào)區(qū)間;
(2)若對任意的x1∈[1,2],?x2∈[-3,-2]使得f(x1)≥g(x2)恒成立,且-2<a<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等比數(shù)列{an}的前n項(xiàng)和Sn=$\frac{{4}^{n}-1}{3}$,則數(shù)列{$\sqrt{{a}_{n}}$}的前n項(xiàng)和Tn=( 。
A.2n-1B.$\sqrt{\frac{{4}^{n}-1}{3}}$C.$\frac{{2}^{n}-1}{3}$D.$\frac{{2}^{n+1}-3}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=|lnx|,若f(m)=f(n)(m>n>0),則$\frac{m}{m+1}$+$\frac{n}{n+1}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知平面α及直線a,b,則下列說法正確的是(  )
A.若直線a,b與平面α所成角都是30°,則這兩條直線平行
B.若直線a,b與平面α所成角都是30°,則這兩條直線不可能垂直
C.若直線a,b平行,則這兩條直線中至少有一條與平面α平行
D.若直線a,b垂直,則這兩條直線與平面α不可能都垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.我市某小學(xué)三年級有甲、乙兩個(gè)班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,現(xiàn)在需要各班按男、女生分層抽取20%的學(xué)生進(jìn)行某項(xiàng)調(diào)查,則兩個(gè)班共抽取男生人數(shù)是11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=x(2016+lnx),f′(x0)=2017,則x0等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)P(1,-2),O(0,0),點(diǎn)M(x,y)滿足不等式組$\left\{\begin{array}{l}{x+y≤6}\\{y-2x≤3}\\{y≥0}\\{x≥0}\end{array}\right.$,則z=$\overrightarrow{OP}$$•\overrightarrow{PM}$的取值范圍為( 。
A.[-1,14]B.[-14,1]C.[-2,13]D.[-13,2]

查看答案和解析>>

同步練習(xí)冊答案