19.如圖,從A地到B地設(shè)置了4條不同的網(wǎng)絡(luò)線路,它們通過的最大信息量分別為1,2,3,4,現(xiàn)從中任取三條網(wǎng)線連通A,B兩地(三條網(wǎng)線可通過的信息總量即三條網(wǎng)線各自的最大信息量之和).
(1)設(shè)三條網(wǎng)線可通過的最大信息總量為x,已知當(dāng)x≥7時(shí),可保證線路信息暢通,求線路信息暢通的概率.
(2)為保證網(wǎng)絡(luò)在x≥7時(shí)信息暢通的概率超過0.85,需要增加一條最大信息量為n(n≥3,n∈N)的網(wǎng)線與原有4條線路并聯(lián),問滿足條件的n的最小值是多少?

分析 (1)當(dāng)x≥7時(shí),三條網(wǎng)絡(luò)可通過的最大信息量分別可取1,2,4;1,3,4;2,3,4共三種情況,4條線路取3條的方法有${C}_{4}^{3}$種,由此能求出線路信息暢通的概率.
(2)當(dāng)n=3時(shí),線路信息暢通的概率P′=1-$\frac{{C}_{2}^{1}}{{C}_{5}^{3}}$=0.8.當(dāng)n>3時(shí)線路信息暢通的概率P′=1-$\frac{1}{{C}_{5}^{3}}$=0.9,由此能求出n的最小值.

解答 解:(1)當(dāng)x≥7時(shí),三條網(wǎng)絡(luò)可通過的最大信息量分別可取1,2,4;1,3,4;2,3,4共三種情況,
4條線路取3條的方法有${C}_{4}^{3}$=4種,故線路信息暢通的概率P=$\frac{3}{4}$.
(2)當(dāng)n=3時(shí),線路信息暢通的概率P′=1-$\frac{{C}_{2}^{1}}{{C}_{5}^{3}}$=0.8<0.85不合題意.
當(dāng)n>3時(shí)線路信息暢通的概率P′=1-$\frac{1}{{C}_{5}^{3}}$=0.9>0.85.
∴n>3符合題意,故n的最小值為4.

點(diǎn)評 本題考查概率的求法及應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.把四個(gè)不同的小球分別標(biāo)上1~4的標(biāo)號,放入三個(gè)分別標(biāo)有1~3號的盒子中,不許有空盒子,且任意一個(gè)小球都不能放入標(biāo)有相同標(biāo)號的盒子中,則不同的放法共有12種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+b(a>0且a≠1)的圖象經(jīng)過點(diǎn)(2,0),(0,-2).
(1)求a和b的值;
(2)求當(dāng)x∈[2,4]時(shí),函數(shù)y=f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且滿足anan+1=2Sn,數(shù)列{bn}滿足b1=16,bn+1-bn=2n,則數(shù)列$\{\frac{b_n}{a_n}\}$中第4項(xiàng)最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),它們之間的距離為6,二次函數(shù)圖象的對稱軸方程為x=2,且f(x)有最小值為-9,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列不等式一定成立的是( 。
A.lg(x2+$\frac{1}{4}$)>lgx(x>0)B.x2+1≥2|x|(x∈R)
C.sin x+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)D.$\frac{1}{{x}^{2}+1}$>1(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow a=(2,5),\overrightarrow b=(-3,6)$,則$\overrightarrow a-\overrightarrow b$=(  )
A.(5,-1)B.(1,-1)C.(-5,1)D.(5,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式$\frac{(x-1)(2-x)}{x+1}>0$的解集是( 。
A.(-∞,-1)∪(1,2)B.(-1,1)∪(2,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.金老師為投資理財(cái),考慮了兩種投資計(jì)劃,
計(jì)劃A:從2015年初開始購買投資產(chǎn)品,每個(gè)月1號投資,第一次投次1500元錢,用于購買“余額寶”,“余額寶”的月收益率為0.5%(類似于銀行存款,月底結(jié)算利息);
計(jì)劃B:從2015年初開始購買投資產(chǎn)品,每個(gè)月1號投資,第一次投次1000元錢,以后每一次比上一次多投資200元,用于購買同一只股票,到2016年底(2016年12月31日),這只股票收益50%的概率為$\frac{1}{4}$,虧損$\frac{1}{12}$的概率為$\frac{3}{4}$.若兩計(jì)劃的收益均不考慮手續(xù)費(fèi).
(1)求計(jì)劃B到2016年底的收益的期望值;
(2)根據(jù)2016年年底的收益,從收益率的角度出發(fā),試問你將選擇何種投資?
(注:收益率=$\frac{收益}{投資總額}$,參考數(shù)據(jù)1.00524≈1.13,$\frac{7}{80}$≈0.0875,$\frac{11}{176}$≈0.0625)

查看答案和解析>>

同步練習(xí)冊答案