9.給出下列四個命題:
①若$|{\vec a}|=|{\vec b}|$,則$\vec a=\vec b$;       
②向量不可以比較大;
③若$\vec a=\vec b$,$\vec b=\vec c$,則$\vec a=\vec c$;  
④$\vec a=\vec b?|{\vec a}|=|{\vec b}|$,$\vec a∥\vec b$.
其中正確的命題為②③.(填正確命題的序號)

分析 ①②③④根據(jù)相關(guān)定義直接判斷即可.

解答 解:①若$|{\vec a}|=|{\vec b}|$,只能說明向量的長度一樣,但方向未定,故錯誤;     
②根據(jù)向量的定義可知,向量不可以比較大小,故正確;
③根據(jù)相等向量的定義可知,若$\vec a=\vec b$,$\vec b=\vec c$,則$\vec a=\vec c$,故正確;  
④$\vec a=\vec b?|{\vec a}|=|{\vec b}|$,$\vec a∥\vec b$,且方向相同,故錯誤.
故答案為②③

點評 本題考查了向量,模長,相等向量的定義,屬于基礎(chǔ)知識,應(yīng)熟練掌握.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知三棱錐A-BCD四個頂點都在半徑為3的球面上,且BC過球心,當三棱錐A-BCD的體積最大時,則三棱錐A-BCD的表面積為( 。
A.$18+6\sqrt{3}$B.$18+8\sqrt{3}$C.$18+9\sqrt{3}$D.$18+10\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2$\sqrt{2}$,動點D在線段AB上.
(Ⅰ)求證:平面COD⊥平面AOB
(Ⅱ)當OD⊥AB時,求三棱錐C-OBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=x3-3x+2在區(qū)間(a,-a2+2a+4)上有極小值,則實數(shù)a的取值范圍是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若f(x)為奇函數(shù),且x0是函數(shù)y=f(x)-ex的一個零點,在下列函數(shù)中,-x0一定是其零點的函數(shù)是( 。
A.y=f(-x)•e-x-1B.y=f(x)•e-x+1C.y=f(x)•e-x-1D.y=f(x)•ex+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某區(qū)實驗幼兒園對兒童記憶能力x與識圖能力y進行統(tǒng)計分析,得到如下數(shù)據(jù):
記憶能力x46810
識圖能力y3568
由表中數(shù)據(jù),求得線性回歸方程為$y=\frac{4}{5}x+a$,當江小豆同學(xué)的記憶能力為12時,預(yù)測他的識圖能力為( 。
A.9B.9.5C.10D.11.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.數(shù)列{an}中,${a_1}=\frac{1}{2},{a_{n+1}}=\frac{{n{a_n}}}{{({n+1})({n{a_n}+1})}}({n∈{N^*}})$,若不等式$\frac{3}{n^2}+\frac{1}{n}+t{a_n}≥0$恒成立,則實數(shù)t的取值范圍是[-$\frac{15}{2}$,+∞)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將函數(shù)$y=4sin({4x+\frac{π}{6}})$的圖象上各點的橫坐標伸長為原來的2倍(縱坐標不變),再將所得圖象向右平移$\frac{π}{6}$個單位,則所得函數(shù)圖象的一個對稱中心為(  )
A.(0,0)B.$({\frac{π}{3},0})$C.$({\frac{π}{12},0})$D.$({\frac{5}{8}π,0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若以3,4,x為三邊組成一個銳角三角形.則x的取值范圍為($\sqrt{7}$,5).若以3,4,x為三邊組成一個鈍角三角形.則x的取值范圍為(5,7)或(1,$\sqrt{7}$).

查看答案和解析>>

同步練習冊答案