當(dāng)x∈[-1,1]時(shí),函數(shù)f(x)=3x-2的值域是…

(  )

A.[1,]                           B.[-1,1] 

C.[-,1]                         D.[0,1]

C 因?yàn)閒(x)=3x-2是x∈[-1,1]上的增函數(shù),

所以3-1-2≤f(x)≤3-2,即-≤f(x)≤1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、已知y=f (x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=ln(-x),那么不等式f(x)<0的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+(b-8)x-a-ab.當(dāng)x∈(-3,2)時(shí),f(x)>0,當(dāng)x∈(-∞,-3)∪(2,+∞)時(shí),f(x)<0.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=
a3
x2+2tanθ•x+b
在區(qū)間[1,+∞)上單調(diào),求θ的取值范圍;
(3)不等式(t-2)f(x)≥t2+(m-2)t-2m+2對(duì)x∈[-1,1]及t∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在[-1,1]上的奇函數(shù),當(dāng)x∈(0,1]時(shí),f(x)=2tx-4x3(t為常數(shù))
(1)求f(x)的表達(dá)式;
(2)當(dāng)0<t≤6時(shí),用定義證明f(x)在[-
6t
6
,
6t
6
]
上單調(diào)遞增;
(3)當(dāng)t>6時(shí),是否存在t使f(x)的圖象的最高點(diǎn)落在直線y=12上.若存在,求出t的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•綿陽(yáng)一模)已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當(dāng)x,y∈(-1,1)時(shí),恒有f(x)-f(y)=f(
x-y
1-xy
).又?jǐn)?shù)列{an}滿足,a1=
1
2
,an+1=
2an
1+an2

(I )證明:f(x)在(-1,1)上是奇函數(shù)
( II )求f(an)的表達(dá)式;
(III)設(shè)bn=-
1
2f(an)
,Tn為數(shù)列{bn}的前n項(xiàng)和,試問是否存在正整數(shù)m,n,使得
4Tn-m
4Tn+1-m
1
2
成立?若存在,求出這樣的正整數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案