分析 根據(jù)題意求出函數(shù)h(x)=max{sinx,cosx}的解析式,利用三角函數(shù)的圖象與性質(zhì)確定函數(shù)h(x)的最值,從而求出結(jié)果.
解答 解:根據(jù)題意知,函數(shù)max{f(x),g(x)}=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,
則h(x)=max{sinx,cosx}=$\left\{\begin{array}{l}{sinx,x∈[2kπ+\frac{π}{4},2kπ+\frac{5π}{4}]}\\{cosx,x∈(2kπ-\frac{3π}{4},2kπ+\frac{π}{4}),k∈Z}\end{array}\right.$,
且h(x+2π)=max{sin(x+2π),cos(x+2π)}=max{sinx,cosx}=h(x),
所以2π是函數(shù)h(x)的一個(gè)周期;
又h(x)≥h($\frac{5π}{4}$)=-$\frac{\sqrt{2}}{2}$,
所以函數(shù)h(x)的最小值為-$\frac{\sqrt{2}}{2}$.
故答案為:$-\frac{{\sqrt{2}}}{2}$.
點(diǎn)評 本題考查了新定義的函數(shù)應(yīng)用問題,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{3}$ | B. | -$\frac{{\sqrt{3}}}{3}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | (-∞,-1] | C. | [1,0) | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com