16.已知角θ的終邊經(jīng)過點(diǎn)$P(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$,則tanθ的值為( 。
A.$-\sqrt{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

分析 由題意利用任意角的三角函數(shù)的定義,求得tanθ的值.

解答 解:∵角θ的終邊經(jīng)過點(diǎn)$P(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$,∴x=-$\frac{1}{2}$,y=$\frac{\sqrt{3}}{2}$,則tanθ=$\frac{y}{x}$=-$\sqrt{3}$,
故選:A.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ(k∈Z),若f(2015)=5,則f(2016)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在下列條件中,可以判斷三角形有兩解的是( 。
A.A=30°.B=45°.c=10B.a=$\sqrt{3}$.c=$\sqrt{2}$.B=45°
C.a=14.c=16.A=45°D.c=7.b=5.C=80°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.以圓形摩天輪的軸心O為原點(diǎn),水平方向?yàn)閤軸,在摩天輪所在的平面建立直角坐標(biāo)系,設(shè)摩天輪的半徑為20米,把摩天輪上的一個(gè)吊籃看作一個(gè)點(diǎn)P0,起始時(shí)點(diǎn)P0在-$\frac{π}{6}$的終邊上,OP0繞O按逆時(shí)針方向作勻速旋轉(zhuǎn)運(yùn)動(dòng),其角速度為$\frac{π}{5}$(弧度/分),經(jīng)過t分鐘后,OP0到達(dá)OP,記P點(diǎn)的橫坐標(biāo)為m,則m關(guān)于時(shí)間t的函數(shù)圖象為 ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.tan$\frac{7π}{6}$的值為( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓x2+y2-6x+4y=3的圓心坐標(biāo)與半徑是( 。
A.$(-3,2)\;\;\;\;\;\;\;\sqrt{13}$B.$(3,-2)\;\;\;\;\;\;\;\sqrt{13}$C.(-3,2)4D.(3,-2)4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)全集U={1,2,3,4,5},集合A={1,2},B={2,4},則CU(A∪B)=( 。
A.{1,3,4,5}B.{1,4}C.{1,2,4}D.{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平行四邊形ABCD中,E,F(xiàn)分別是BC,DC上的點(diǎn),且滿足$\overrightarrow{BE}$=$\overrightarrow{EC}$,$\overrightarrow{DF}$=2$\overrightarrow{FC}$,記$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,試以$\overrightarrow a,\overrightarrow b$為平面向量的一組基底.利用向量的有關(guān)知識(shí)解決下列問題;
(Ⅰ)用$\overrightarrow a,\overrightarrow b$來表示向量$\overrightarrow{DE}與\overrightarrow{BF}$;
(Ⅱ)若|AB|=3,|AD|=2,且|BF|=$\sqrt{3}$,求|$\overrightarrow{DE}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義函數(shù)max{f(x),g(x)}=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,則max{sinx,cosx}的最小值為-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案