(本小題滿分14分)  已知為正實(shí)數(shù),為自然數(shù),拋物線軸正半軸相交于點(diǎn),設(shè)為該拋物線在點(diǎn)處的切線在軸上的截距。

(Ⅰ)用表示;

(Ⅱ)求對(duì)所有都有成立的的最小值;

(Ⅲ)當(dāng)時(shí),比較

的大小,并說明理由。

 

【答案】

(1);(2)3;(3)見解析.

【解析】(1)由已知得,交點(diǎn)A的坐標(biāo)為,對(duì)

則拋物線在點(diǎn)A處的切線方程為:

  ………………4分

(2)由(1)知f(n)=,則

(3)即知,對(duì)于所有的n成立,

特別地,當(dāng)n=1時(shí),得到a≥3

當(dāng)a=3,n≥1時(shí),

當(dāng)n=0時(shí),=2n+1.故a=3時(shí)對(duì)所有自然數(shù)n均成立.

所以滿足條件的a的最小值為3. ………………………………………………8分

(4)由(1)知f(k)=

下面證明:

首先證明0<x<1時(shí),

設(shè)函數(shù)g(x)=6x(x2-x)+1,0<x<1,  則.

當(dāng)時(shí),g'(x)<0;   當(dāng)

故g(x)在區(qū)間(0,1)上的最小值

所以,當(dāng)0<x<1時(shí),g(x)>0,即得

由0<a<1知

 

[點(diǎn)評(píng)]本小題屬于高檔題,難度較大,需要考生具備扎實(shí)的數(shù)學(xué)基礎(chǔ)和解決數(shù)學(xué)問題的能力.主要考查了導(dǎo)數(shù)的應(yīng)用、不等式、數(shù)列等基礎(chǔ)知識(shí);考查了思維能力、運(yùn)算能力、分析問題與解決問題的能力和創(chuàng)新意識(shí)能力;且又深層次的考查了函數(shù)、轉(zhuǎn)換與化歸、特殊與一般等數(shù)學(xué)思維方法。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案