分析 要證不等式ln(x+1>$\frac{x}{1+x}$恒成立,只需證(x+1)ln(x+1)-x>0成立,構(gòu)造函數(shù)f(x)=(x+1)ln(x+1)-x,利用導(dǎo)數(shù)判斷f(x)在x>0時(shí)單調(diào)遞增,從而得到f(x)>f(0)=0,即(x+1)ln(x+1)-1>0成立;令f(x)=x-ln(x+1),根據(jù)它的導(dǎo)數(shù)的符號(hào)可得函數(shù)f(x)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性求得f(x)>0,從而證得不等式.
解答 證明:∵x>0,
∴要證ln(x+1)>$\frac{x}{1+x}$,
只需證(x+1)ln(x+1)>x,
即證(x+1)ln(x+1)-x>0,
令f(x)=(x+1)ln(x+1)-x,
則f′(x)=ln(x+1)+1-1=ln(x+1),
∵x>0,
∴l(xiāng)n(x+1)>ln1=0,
即f′(x)>0,
∴f(x)在x>0時(shí)單調(diào)遞增,
∴f(x)>f(0)=0
∴(x+1)ln(x+1)-x>0成立,
∴$\frac{x}{1+x}$<ln(1+x).
令f(x)=x-ln(x+1),則它的導(dǎo)數(shù)為 f′(x)=1-$\frac{1}{x+1}$.
當(dāng)x>0時(shí),f′(x)>0,故函數(shù)f(x)在(0,+∞)上是增函數(shù).
故有f(x)=x-ln(x+1)>0,∴l(xiāng)n(x+1)≤x.
∴$\frac{x}{1+x}$<ln(1+x)<x(x>0).
點(diǎn)評(píng) 本題考查不等式的性質(zhì),導(dǎo)數(shù)在研究函數(shù)單調(diào)性中的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | (1,2) | C. | (1,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com