分析 (1)設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)運(yùn)用離心率公式和內(nèi)切圓的性質(zhì)以及三角形的面積公式,計(jì)算即可得到a,b,c,進(jìn)而得到橢圓方程;
(2)設(shè)出直線l的方程為x=my+1,代入橢圓方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,再設(shè)直線x=my,代入橢圓方程,運(yùn)用弦長(zhǎng)公式,化簡(jiǎn)可得|AB|,再由計(jì)算即可得到所求常數(shù)λ.
解答 解:(1)設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)
由題意可得a=2,$\frac{1}{{a}^{2}}+\frac{\frac{9}{4}}{^{2}}$=1,
可得b=$\sqrt{3}$,
即有橢圓的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(2)設(shè)l的方程為x=my+1,M(x1,y1),N(x2,y2),
由直線與橢圓方程,聯(lián)立得(3m2+4)y2+6my-9=0,
即有y1+y2=-$\frac{6m}{4+3{m}^{2}}$,y1y2=-$\frac{9}{4+3{m}^{2}}$,
|MN|=$\sqrt{1+{m}^{2}}$•$\sqrt{(-\frac{6m}{4+3{m}^{2}})^{2}-4•(-\frac{9}{4+3{m}^{2}})}$=$\frac{12(1+{m}^{2})}{4+3{m}^{2}}$,
設(shè)A(x3,y3),B(x4,y4),
由x=my代入橢圓方程可得
消去x,并整理得y2=$\frac{12}{4+3{m}^{2}}$
|AB|=$\sqrt{1+{m}^{2}}$•|y3-y4|=$\sqrt{1+{m}^{2}}$•$\frac{4\sqrt{3}}{\sqrt{4+3{m}^{2}}}$
即有|AB|2=4|MN|.
故存在常數(shù)λ=4,使得|AB|2=4|MN|.
點(diǎn)評(píng) 本題考查橢圓的方程的求法,注意運(yùn)用橢圓的離心率公式和內(nèi)切圓的性質(zhì),考查弦長(zhǎng)的求法,注意運(yùn)用直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
轉(zhuǎn)速x/(rad/s) | 16 | 14 | 12 | 8 |
每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y/件 | 11 | 9 | 8 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | -2 | -1 | 0 | 1 | 2 |
y | 5 | 4 | 2 | 2 | 1 |
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
氣溫x(度) | 18 | 13 | 10 | -1 |
用電量y(度) | 24 | 34 | 38 | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\sqrt{6}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,3) | B. | [-1,3] | C. | (-∞,-1)∪(3,+∞) | D. | [-1,0)∪(0,3] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com