已知函數(shù)是定義域為的單調(diào)減函數(shù),且是奇函數(shù),當時,
(1)求的解析式;(2)解關(guān)于的不等式
(1);(2)

試題分析:(1)由題意可知,是定義域為的奇函數(shù),所以;當時,,則可根據(jù)奇函數(shù)的性質(zhì)求出時的解析式;(2)由是奇函數(shù),可將原不等式化為
,再根據(jù)函數(shù)是減函數(shù)的性質(zhì),可得到不等式,從中求出的取值范圍.
試題解析:(1)定義域為的函數(shù)是奇函數(shù),;
時,,又函數(shù)是奇函數(shù),

綜上所述;
(2)由,得
是奇函數(shù),
是減函數(shù),,即,解得,所以的取值范圍是
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

對定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意的,都有,且對任意的都有恒成立,則稱函數(shù)為區(qū)間上的“型”函數(shù).
(1)求證:函數(shù)上的“型”函數(shù);
(2)設是(1)中的“型”函數(shù),若不等式對一切的恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的“型”函數(shù),求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一次研究性課堂上,老師給出函數(shù),甲、乙、丙三位同學在研究此函數(shù)的性質(zhì)時分別給出下列命題:
甲:函數(shù)為偶函數(shù);
乙:函數(shù);
丙:若則一定有
你認為上述三個命題中正確的個數(shù)有            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

己知函數(shù)f(x)=在[-1,1]上的最大值為M(a) ,若函數(shù)g(x)=M(x)-有4個零點,則實數(shù)t的取值范圍為(     )
A.(1,)B.(1,-1)
C.(1,-1)(1, )D.(1,-1)(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,當時,恒成立,則實數(shù)的取值范圍是(   )
A.(0,1)B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù),若實數(shù)滿足,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)滿足:對任意實數(shù),當時,總有,則實數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知奇函數(shù)在區(qū)間上單調(diào)遞減,則不等式的解集是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若扇形的半徑為R,所對圓心角為,扇形的周長為定值c,則這個扇形的最大面積為___.

查看答案和解析>>

同步練習冊答案