精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ex-a(x-1),x∈R,其中a為實數.
(1)若實數a>0,求函數f(x)在(0,+∞)上的極值.
(2)記函數g(x)f(2x),設函數y=g(x)的圖象C與y軸交于P點,曲線C在P點處的切線與兩坐標軸所圍成的圖形的面積為S(a),當a>1時,求S(a)的最小值;
(3)當x∈(0,+∞)時,不等式f(x)+f′(x)+x3-2x2≥0恒成立,求實數a的取值范圍.
分析:(1)求出函數的導數,對a進行討論,分別判斷函數的單調性,最后根據a的不同取值得出的結論綜合即可;
(2)g(x)=f(2x)=e2x-a(2x-1),計算出切線斜率,寫出切線方程y-(1+a)=(2-2a)(x-0),求得在坐標軸上的截距,利用三角形的面積公式得到面積S(a)的表達式,最后利用基本不等式求此函數的最小值即可;
(3)利用分離參數法,借助于求函數的最值,可求實數a的取值范圍.
解答:解::(1)由f'(x)=ex-a=0,得x=lna.
①當a∈(0,1]時,f'(x)=ex-a>1-a≥0(x>0).此時f(x)在(0,+∞)上單調遞增.函數無極值.
②當a∈(1,+∞)時,lna>0.
x變化時f′(x),f(x)的變化情況如下表:
x (0,lna) lna (lna,+∞)
f′(x) - 0 =
f(x) 單減 極小值 單增
由此可得,函數有極小值且f(x)極小=f(lna)=a-a(lna-1)=2a-alna.
(2)g(x)=f(2x)=e2x-a(2x-1),g(0)=1+a
切線斜率為k=g'(0)=2-2a,切線方程y-(1+a)=(2-2a)(x-0),
由x=0,y=1+a,由y=0,x=
a+1
2(a-1)

∴S(a)=
1
2
×(a+1)
×
a+1
2(a-1)
=
1
4
[(a-1)+
4
a-1
+4]≥2
當且僅當(a-1)2=4,即a=3時取等號.∴當a=3時,S(a)最小值為2.
(3)由已知不等式即為:2ex+x3-2x2≥ax,
∴a≤
2ex
x
+x2-2x

令u(x)=
2ex
x
+x2-2x
,則u′(x)=
2(x-1)(ex+2)
x2

∴x∈(0,1)時,u′(x)<0,x∈(1,+∞)時,u′(x)>0
∴u(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增
∴x=1時,u(x)的最小值為2e-1
∴a≤2e-1.
點評:本題考查利用導數研究函數的極值,考查基本不等式的運用,考查分離參數法.解答關鍵是要對函數求導,做題時要注意對a進行討論,最后得出函數的極值和單調區(qū)間.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數x從小到大排成數列{xn}.求證:數列{f(xn)}為等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區(qū)二模)已知函數f(x)=e|x|+|x|.若關于x的方程f(x)=k有兩個不同的實根,則實數k的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•菏澤一模)已知函數f(x)=e|lnx|-|x-
1
x
|,則函數y=f(x+1)的大致圖象為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=e-x(x2+x+1).
(Ⅰ)求函數f(x)的單調遞減區(qū)間;
(Ⅱ)求函數f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習冊答案