設(shè)數(shù)列{an}的前n項和為Sn,的4Sn=an2+2an-3,且a1、a2、a3、a4…a11成等比數(shù)列,當(dāng)n≥11時,an>0.
(1)求證,當(dāng)a≥11時,{an}為等差數(shù)列
(2)求:當(dāng)n>10時,{an}的前n項和Sn
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由4Sn=an2+2an-3,利用遞推式可得:a1=3或-1.當(dāng)n≥2時,(an+an-1)(an-an-1-2)=0,可得an=-an-1,或an-an-1=2.由于a1、a2、a3、a4…a11成等比數(shù)列,當(dāng)n≥11時,an>0.因此當(dāng)n≤10時,取an=-an-1;當(dāng)n≥11時,取an-an-1=2,必須取a1=3.
(2)當(dāng)n≤10時,an=3×(-1)n-1,當(dāng)n>10時,an=3+2(n-11)=2n-19.利用等差數(shù)列的前n項和公式即可得出.
解答: (1)證明:∵4Sn=an2+2an-3,∴當(dāng)n=1時,4a1=
a
2
1
+2a1
-3,解得a1=3或-1.
當(dāng)n≥2時,4Sn-1=
a
2
n-1
+2an-1
-3,(an+an-1)(an-an-1-2)=0,
∴an=-an-1,或an-an-1=2.
由于a1、a2、a3、a4…a11成等比數(shù)列,當(dāng)n≥11時,an>0.
∴當(dāng)n≤10時,取an=-an-1;當(dāng)n≥11時,取an-an-1=2,必須取a1=3.
∴當(dāng)a≥11時,{an}為等差數(shù)列,首項為3,公差為2.
(2)當(dāng)n≤10時,an=3×(-1)n-1
當(dāng)n>10時,an=3+2(n-11)=2n-19.
{an}的前n項和Sn=(3-3+3-3+…+3-3)+3+5+…+(2n-19)
=
(n-10)(3+2n-19)
2

=n2-18n+80.
點評:本題考查了遞推式的應(yīng)用、等差數(shù)列的前n項和公式,考查了推理能力與計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x 
3
2
+x 
1
2
(x>0)的圖象上有一動點P且在該點處的切線的傾斜角為θ,則θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(180°+α)+cos(90°+α)=-a,則cos(270°-α)+2sin(360°-α)的值是( 。
A、-
2a
3
B、-
3a
2
C、
2a
3
D、
3a
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)sinα>0,cosα<0,且sin
α
3
>cos
α
3
,則
α
3
的取值范圍是( 。
A、(2kπ+
π
6
,2kπ+
π
3
),k∈Z
B、(
2kπ
3
+
π
6
,
2kπ
3
+
π
3
),k∈Z
C、(2kπ+
6
,2kπ+π),k∈Z
D、(2kπ+
π
4
,2kπ+
π
3
)∪(2kπ+
6
,2kπ+π),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)在休閑廣場活動比較流行一種“套圈”的游戲,花1元錢可以買到2個竹制的圓形套圈,玩家站在指定的位置向放置在地面上獎品拋擲,一次投擲一個,只要獎品被套圈套住,則該獎品即歸玩家所有,已知玩家對一款玩具熊志在必得,玩具被套走以后商家馬上更換同樣的玩具供玩具游戲,已知玩家在一段時間內(nèi)游戲中的消費金額與中獎次數(shù)之間的數(shù)據(jù)如下:
消費金額x2468121516
中獎次數(shù)y1123455
(1)試判斷變量x與變量y之間是否具有線性相關(guān)關(guān)系,若是請求出線性回歸方程;若不是,請說明理由;
(2)①你能否通過表格中的數(shù)據(jù)估計當(dāng)玩家消費30元時可以獲取的玩具熊的個數(shù),若能,給出你的估計值;
②若一只玩具熊的成本價為a元,試討論商家的利潤預(yù)期與玩具熊的成本價之間的關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c是△ABC的3邊,S是△ABC的面積,求證:c2-a2-b2+4ab≥4
3
S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求0.9115的近似值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(1+x)3(1-x)2的展開式中,含x4的項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD中,E為AB上一點,P為以點A為圓心,以AB為半徑的圓弧上一點,若
AC
=x
DE
+y
AP
(xy≠0),則以下說法正確的是:
 
  (請將所有正確的命題序號填上)
①若點E和A重合,點P和B重合,則x=-1,y=1;
②若點E是線段AB的中點,則點P是圓弧
DB
的中點;
③若點E和B重合,且點P為靠近D點的圓弧的三等分點,則x+y=3;
④若點E與B重合,點P為
DB
上任一點,則動點(x,y)的軌跡為雙曲線的一部分.

查看答案和解析>>

同步練習(xí)冊答案