已知函數(shù)y=x 
3
2
+x 
1
2
(x>0)的圖象上有一動點P且在該點處的切線的傾斜角為θ,則θ的取值范圍是
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用,三角函數(shù)的圖像與性質(zhì)
分析:求出函數(shù)的導數(shù),運用基本不等式可得切線的斜率k≥
3
,再由直線的斜率公式及傾斜角的范圍和正切函數(shù)的圖象和性質(zhì),即可得到所求范圍.
解答: 解:函數(shù)y=x 
3
2
+x 
1
2
(x>0)的導數(shù)為y′=
3
2
x
1
2
+
1
2
x-
1
2

≥2
3
2
x
1
2
1
2
x-
1
2
=
3
,
由在該點P處的切線的傾斜角為θ,
即有tanθ≥
3

由0≤θ<π,
即有
π
3
≤θ<
π
2

故答案為:[
π
3
,
π
2
).
點評:本題考查導數(shù)的幾何意義:函數(shù)在某點處的導數(shù)即為曲線在該點處的切線的斜率,正確求導和運用正切函數(shù)的圖象和性質(zhì)是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知m∈R.復數(shù)z=lgm+(m2-1)i,當m為何值時z為實數(shù),z為虛數(shù),z為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當a=1時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當a=
1
3
時,設函數(shù)g(x)=x2-2bx-
5
12
,若對于?x1∈[0,1],對于?x1∈[1,2],?x2∈[0,1]使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},{bn}的通項公式分別為an=2n,bn=3n,若cn=a1bn+a2bn-1+a3bn-2+…+anb1,則數(shù)列{cn}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

O為平行四邊形ABCD所在平面上一點,若3|
AB
|=2|
AD
|,
OA
+
OB
=λ(
OC
+
OD
),
OA
=μ(
AB
+2
AC
),則λ的值是(  )
A、-
1
3
B、-
1
2
C、-
2
3
D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若4x+4y=1,則x+y的取值范圍是(  )
A、[0,1]
B、[-1,0]
C、[-1,+∞)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P是拋物線y2=6x上的點,若P到點(
3
2
,0)的距離為15,則P到直線2x+5=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在公差為d的等差數(shù)列{an}中,已知a1=10和2a2+2與5a3成等比數(shù)列.
(1)求d及an;
(2)若bn=|an|,數(shù)列{bn}的前n項和為Tn,求T15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,的4Sn=an2+2an-3,且a1、a2、a3、a4…a11成等比數(shù)列,當n≥11時,an>0.
(1)求證,當a≥11時,{an}為等差數(shù)列
(2)求:當n>10時,{an}的前n項和Sn

查看答案和解析>>

同步練習冊答案