8.如圖,在四棱錐P-ABCD中,PD=4,DC=DB=3,PB=PC=5,AD⊥DB.
(1)求證:AD⊥PB;
(2)若tan∠BDC=$\frac{3}{4}$,且AD=6,求四棱錐P-ABCD的體積.

分析 (1)利用勾股定理的逆定理可得:PD⊥DB,PD⊥DC,于是PD⊥平面ABCD.可得PD⊥AD,進(jìn)而證明AD⊥平面PBD,即可證明.
(2)由tan∠BDC=$\frac{3}{4}$,可得sin∠BDC=$\frac{3}{5}$,即可得出S△BCD,S△ABD,利用VP-ABCD=$\frac{1}{3}({S}_{△BCD}+{S}_{△ABD})×PD$,即可得出.

解答 (1)證明:∵PD=4,DC=DB=3,PB=PC=5,∴PD2+DB2=PB2,PD2+CD2=PC2,可得PD⊥DB,PD⊥DC,又DB∩DC=D,
∴PD⊥平面ABCD.
∴PD⊥AD,
又AD⊥DB,PD∩DB=D.
∴AD⊥平面PBD,
∴AD⊥PB.
(2)解:∵tan∠BDC=$\frac{3}{4}$,∴sin∠BDC=$\frac{3}{5}$,
∴S△BCD=$\frac{1}{2}×{3}^{2}×sin∠BDC$=$\frac{27}{10}$.
又S△ABD=$\frac{1}{2}×6×3$=9,
∴VP-ABCD=$\frac{1}{3}({S}_{△BCD}+{S}_{△ABD})×PD$=$\frac{1}{3}×(9+\frac{27}{10})×4$=$\frac{78}{5}$.

點評 本題考查了勾股定理的逆定理、線面垂直的判定與性質(zhì)定理、四棱錐的體積計算公式、三角形的面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{cx+1(0<x<c)}\\{{2^{-\frac{x}{c^2}}}+1(c≤x<1)}\end{array}}\right.$滿足f(c2)=$\frac{9}{8}$.則f(x)的值域為(1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某人2002年1月1日到銀行存入一年期定期存款a元,若年利率為r,按復(fù)利計算,到期自動轉(zhuǎn)存,那么到2016年1月1日可取回款為( 。
A.a(1+r)13B.a(1+r)14C.a(1+r)15D.a+a(1+r)15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.冪函數(shù)y=f(x)的圖象過點(2,$\sqrt{2}$),則此冪函數(shù)的解析式是f(x)=${x^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足遞推式an=2an-1+1(n≥2),其中a4=15
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn},有bn=$\frac{n}{{a}_{n}+1}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.有濃度為90%的溶液100g,從中倒出10g后再倒入10g水稱為一次操作,要使?jié)舛鹊陀?0%,這種操作至少應(yīng)進(jìn)行的次數(shù)為(參考數(shù)據(jù):1g2=0.3010,1g3=0.4771)( 。
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某機床生產(chǎn)一種尺寸為10mm的零件,現(xiàn)在從中隨意抽取10個,它們的尺寸分別是:10.2,10.1,10,9.8,9.9,10.3,9.7,10,9.9,10.1(單元:mm),如果機床生產(chǎn)的零件尺寸ξ服從正態(tài)分布,求其正態(tài)分布的概率密度函數(shù)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知不等式組$\left\{\begin{array}{l}{x>0}\\{y>0}\\{3x+4y≤12}\end{array}\right.$表示的平面區(qū)域為D.
(1)求區(qū)域D的面積;
(2)若(x,y)∈D,求(x-2)2+(y-2)2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=-x2-2x+1,x∈[-4,2],求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案