已知數(shù)列{an}中,a1=2,且
an
an-1
=
n-1
n+1
,則an=
 
考點:數(shù)列遞推式
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用累乘法即可求得an,注意檢驗n=1時情形.
解答: 解:∵a1=2,且
an
an-1
=
n-1
n+1
,
∴n≥2時,an=a1
a2
a1
a3
a2
a4
a3
an
an-1

=2
1
3
2
4
3
5
n-3
n-1
n-2
n
n-1
n+1

=2
2
n(n+1)
=
4
n(n+1)
,
又a1=2適合上式,
∴an=
4
n(n+1)
,
故答案為:
4
n(n+1)
點評:該題考查由數(shù)列遞推式求數(shù)列通項,屬基礎(chǔ)題,注意掌握累乘法的遞推式特征:
an+1
an
=f(n)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=2-2i,且|z|=1,則|z-z1|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:
①若向量
a
b
共線,則向量
a
,
b
所在的直線平行;
②若向量
a
,
b
所在的直線為異面直線,則向量
a
,
b
一定不共面;
③若三個向量
a
,
b
,
c
兩兩共面,則向量
a
,
b
,
c
共面;
④共面的三個向量是指平行于同一個平面的三個向量;
⑤已知空間的三個不共線的向量
a
b
,
c
,則對于空間的任意一個向量
p
總存在實數(shù)x,y,z使得
p
=x
a
+y
b
+z
c

其中正確命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知asinA=bsinB,那么△ABC的形狀
 
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意實數(shù)組x1,x2,…,xn,記它們中最小的數(shù)為f(x1,x2,…,xn),給出下述結(jié)論:
①函數(shù)y=f(4x,2-3x)的圖象為一條直線;
②函數(shù)y=f(x,2-x)的最大值等于1;
③函數(shù)y=f(x2+2x,x2-2x)一定為偶函數(shù);
④對a>0,b>0,f(a,b,
1
a2+b2
)的最大值為
3
1
2

其中,正確命題的序號有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“漸升數(shù)”是指每個數(shù)字比它左邊的數(shù)字大的正整數(shù)(如1468),若把四位“漸升數(shù)”按從小到大的順序排列,則第30個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對某市“四城同創(chuàng)”活動中800名志愿者的年齡抽樣調(diào)查統(tǒng)計后得到頻率分布直方圖(如圖),但是年齡組為[25,30)的數(shù)據(jù)不慎丟失,則依據(jù)此圖可得:
(1)[25,30)年齡組對應(yīng)小矩形的高度為
 
;
(2)據(jù)此估計該市“四城同創(chuàng)”活動中志愿者年齡在[25,35)的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先后拋擲兩枚均勻的骰子,若骰子朝上一面的點數(shù)依次是x,y(x,y∈{1,2,3,4,5,6}),則logx(2y-1)>1的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行六面休ABCD-A′B′C′D′中,若
AC′
=x
AB
+2y
BC
+3z
C′C
,則x+y+z等于( 。
A、
11
6
B、
7
6
C、
5
6
D、
2
3

查看答案和解析>>

同步練習(xí)冊答案