已知P是△ABC所在平面α外一點(diǎn),O是點(diǎn)P在平面α內(nèi)的射影
(1)若P到△ABC的三個(gè)頂點(diǎn)的距離相等,則O是△ABC外心;
(2)若PA、PB、PC與平面α所成的角相等,則O是△ABC的內(nèi)心;
(3)若P到△ABC三邊距離相等,且O在△ABC的內(nèi)部,則O是△ABC的內(nèi)心;
(4)若平面PAB、PBC、PCA與平面α所成的角相等,且O在△ABC的內(nèi)部,則O是△ABC的外心;
(5)若PA、PB、PC兩兩垂直,則O是△ABC的垂心.
其中正確命題的序號(hào)是
 
(把你認(rèn)為正確命題的序號(hào)都寫上)
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:先跟據(jù)條件畫出圖形,通過直線與平面所成角、二面角以及直線與平面垂直,內(nèi)角平分線判斷出五個(gè)命題中得出垂心,外心,內(nèi)心,正確命題即可.
解答: 解:對(duì)于(1),如圖P是△ABC所在平面外一點(diǎn),O是P點(diǎn)在平面a上的射影.
若P到△ABC三個(gè)頂點(diǎn)的距離相等,由條件可證得OA=OB=OC,
由三角形外心的定義可知,此時(shí)O是三角形ABC的外心,
∴命題(1)正確;
對(duì)于(2),∠PAO=∠PBO=∠PCO⇒AO=BO=CO⇒O為三角形的外心,
∴命題(2)不正確.
對(duì)于(3),在△ABC內(nèi)部取一點(diǎn)P使得點(diǎn)P到△ABC的三邊距離相等,
∴點(diǎn)P應(yīng)是△ABC的三內(nèi)角角平分線的交點(diǎn).三內(nèi)角角平分線的交點(diǎn),則O是△ABC的內(nèi)心,
∴命題(3)正確;
對(duì)于(4),∠PEO=∠PFO=∠PDO⇒OD=OE=OF⇒O為三角形的內(nèi)心.則O是△ABC的外心,命題(4)不正確.
對(duì)于(5),連結(jié)AO并延長(zhǎng),交BC與D連結(jié)BO并延長(zhǎng),交AC與E;
因PA⊥PB,PA⊥PC,故PA⊥面PBC,故PA⊥BC;
因PO⊥面ABC,故PO⊥BC,故BC⊥面PAO,
故AO⊥BC即AO⊥BC;
同理:BO⊥AC;
故O是△ABC的垂心.
∴命題(5)正確;
故答案為:(1)(3)(5).
點(diǎn)評(píng):本題考查三角形內(nèi)的特殊點(diǎn)內(nèi)心,外心,垂心,此是三角形?嫉囊环N題型,同時(shí)考查了線面垂直的定義與三角形的全等等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,以點(diǎn)P為圓心的圓與圓x2+y2-2y=0外切且與x軸相切(兩切點(diǎn)不重合).
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若直線mx-y+2m+5=0(m∈R)與點(diǎn)P的軌跡交于A、B兩點(diǎn),問:當(dāng)m變化時(shí),以線段AB為直徑的圓是否會(huì)經(jīng)過定點(diǎn)?若會(huì),求出此定點(diǎn);若不會(huì),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)B、C的坐標(biāo)為B(-2,0),C(2,0),直線AB,AC的斜率乘積為-
1
4
,設(shè)頂點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)曲線E與y軸負(fù)半軸的交點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求
S
|k|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①“若tanA+tanB+tanC>0,則△ABC是銳角三角形”是真命題;
②“若x=y,則sinx=siny”的逆命題為真命題;
③sin4>cos4;
④函數(shù)f(x)=|sinx|+|cosx|的最小正周期是π;
⑤在△ABC中,∠A<∠B是cos2A>cos2B的充要條件;
其中錯(cuò)誤的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:①函數(shù)f(x)=sinx+
2
sinx
(x∈(0,π))
的最小值是2
2

②在△ABC中,若sin2A=sin2B,則△ABC是等腰或直角三角形;
③如果正實(shí)數(shù)a,b,c滿足a+b>c,則
a
1+a
+
b
1+b
c
1+c
;
④如果y=f(x)是可導(dǎo)函數(shù),則f′(x0)=0是函數(shù)y=f(x)在x=x0處取到極值的必要不充分條件.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x
x2+x+1
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊上一點(diǎn)的坐標(biāo)為(3,4),則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的假命題是( 。
A、?x∈R,2x>0
B、“|a|>0”是“a>0”的必要不充分條件
C、“x<2”是“|x|<2”的充分不必要條件
D、“?x0∈R,使得x2-x>0”的否定是“?x∈R,都有x2-x≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)與雙曲線
x2
m2
-
y2
3-m2
=1(0<m2<3)
有公共的焦點(diǎn),過橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線y2=2x于M、N兩點(diǎn),且OM⊥ON.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A、關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案