15.某物流公司為了配合“北改”項(xiàng)目順利進(jìn)行,決定把三環(huán)內(nèi)的租用倉庫搬遷到北三環(huán)外重新租地建設(shè).已知倉庫每月占用費(fèi)y1與倉庫到車站的距離成反比,而每月車載貨物的運(yùn)費(fèi)y2與倉庫到車站的距離成正比.據(jù)測算,如果在距離車站10千米處建倉庫,這兩項(xiàng)費(fèi)用y1,y2分別是2萬元和8萬元,那么要使這兩項(xiàng)費(fèi)用之和最小,倉庫應(yīng)建在離車站5千米處.

分析 設(shè)倉庫應(yīng)建在離車站x千米處,由倉庫每月占用費(fèi)y1與倉庫到車站的距離成反比,每月車載貨物的運(yùn)費(fèi)y2與倉庫到車站的距離成正比,利用給出的x=10及對(duì)應(yīng)的費(fèi)用求出比例系數(shù),得到y(tǒng)1,y2關(guān)于x的函數(shù)關(guān)系式,寫出這兩項(xiàng)費(fèi)用之和,由基本不等式求最值.

解答 解:設(shè)倉庫應(yīng)建在離車站x千米處.
∵倉庫每月占用費(fèi)y1與倉庫到車站的距離成反比,
令反比例系數(shù)為m(m>0),則y1=$\frac{m}{x}$,
當(dāng)x=10時(shí),y1=$\frac{m}{10}$=2,∴m=20;
∵每月車載貨物的運(yùn)費(fèi)y2與倉庫到車站的距離成正比,
令正比例系數(shù)為n(n>0),則y2=nx,
當(dāng)x=10時(shí),y2=10n=8,∴n=$\frac{4}{5}$.
∴兩項(xiàng)費(fèi)用之和:
y=y1+y2=$\frac{20}{x}$+$\frac{4x}{5}$≥2×4=8(萬元).
當(dāng)且僅當(dāng)$\frac{20}{x}$=$\frac{4x}{5}$,即x=5時(shí),取等號(hào).
∴倉庫應(yīng)建在離車站5千米處,可使這兩項(xiàng)費(fèi)用之和最小,為8萬元.
故答案為5.

點(diǎn)評(píng) 本題考查了函數(shù)模型的選擇及應(yīng)用,考查了簡單的數(shù)學(xué)建模思想方法,解答此題的關(guān)鍵對(duì)題意的理解,通過題意求出比例系數(shù),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.否定結(jié)論“至多有一個(gè)解”的說法中,正確的是( 。
A.有一個(gè)解B.有兩個(gè)解C.至少有三個(gè)解D.至少有兩個(gè)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)過點(diǎn)A(1,m),B為拋物線的準(zhǔn)線與x軸的交點(diǎn),若|AB|=2$\sqrt{2}$.
(1)求拋物線的方程;
(2)在拋物線上任取一點(diǎn)P(x0,2),過點(diǎn)P作兩條直線分別與拋物線另外相交于點(diǎn)M,N,連接MN,若直線
PM,PN,MN的斜率都存在且不為零,設(shè)其斜率分別為k1,k2,k3,求$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$-$\frac{1}{{k}_{3}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)是定義在[-1,1]上的奇函數(shù),f(1)=1,且若?a、b∈[-1,1],a+b≠0,恒有$\frac{f(a)+f(b)}{a+b}$>0,
(1)證明:函數(shù)f(x)在[-1,1]上是增函數(shù);
(2)若?x∈[-1,1],對(duì)?a∈[-1,1],不等式f(x)≥m2-2am-2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2ax3-(3a+1)x2+2x+5;
(1)a為何值時(shí),函數(shù)f(x)沒有極值點(diǎn);
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知A,B,C是單位圓上互不相同的三點(diǎn),且滿足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,則$\overrightarrow{AB}$$•\overrightarrow{AC}$的最小值為( 。
A.-$\frac{1}{4}$B.-$\frac{1}{2}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.${(x-\frac{2}{x})^5}$的展開式中含x3的系數(shù)為-10.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知定義域?yàn)镽的函數(shù)f(x)滿足對(duì)任意x∈R都有f(x+1)=f(x)+cosπx,f(-x)=f(x),當(dāng)0≤x≤1時(shí),f(x)=2x-1,若函數(shù)F(x)=f(x)-loga|x|(a>1)恰有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(3,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知非零向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$+2$\overrightarrow$|,且$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為-$\frac{1}{4}$,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$等于( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案