過(guò)點(diǎn)P(4,2)作圓x2+y2=4的兩條切線,切點(diǎn)分別為A、B,O為坐標(biāo)原點(diǎn),則△OAB的外接圓方程為
 
考點(diǎn):圓的切線方程
專(zhuān)題:計(jì)算題,直線與圓
分析:由題意知OA⊥PA,BO⊥PB,四邊形AOBP的四個(gè)頂點(diǎn)在同一個(gè)圓上,此圓的直徑是OP,△AOB外接圓就是四邊形AOBP的外接圓.
解答: 解:由題意知,OA⊥PA,BO⊥PB,∴四邊形AOBP有一組對(duì)角都等于90°,
∴四邊形AOBP的四個(gè)頂點(diǎn)在同一個(gè)圓上,此圓的直徑是OP,OP的中點(diǎn)為(2,1),
OP=2
5
,∴四邊形AOBP的外接圓的方程為  (x-2)2+(y-1)2=5,
∴△AOB外接圓的方程為 (x-2)2+(y-1)2=5.
故答案為:(x-2)2+(y-1)2=5.
點(diǎn)評(píng):本題考查圓的標(biāo)準(zhǔn)方程的求法,把求△AOB外接圓方程轉(zhuǎn)化為求四邊形AOBP的外接圓方程,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=kx2-3x+5在(0,+∞)上是減函數(shù),則f(2)的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC外接圓的半徑為1,圓心為O.若|
OA
|=|
AB
|
,且2
OA
+
AB
+
AC
=0
,則
CA
CB
等于( 。
A、
3
B、2
3
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=
2
+2cosθ
y=2sinθ
(θ為參數(shù)),若以直角坐標(biāo)系xOy的原點(diǎn)為極點(diǎn),Ox為極軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=0,求與直線l垂直且與曲線C相切的直線m的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

O1x2+y2=1,O2:(x-2)2+y2=4的公共弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面內(nèi),A點(diǎn)在(4,0),B點(diǎn)在圓(x-2)2+y2=1上,以AB為邊作正△ABC(A、B、C按順時(shí)針排列),則頂點(diǎn)C的軌跡是( 。
A、圓B、橢圓
C、拋物線D、雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在圓(x-3)2+(y-5)2=2的切線中,滿足在兩坐標(biāo)軸上截距相等的直線共有( 。
A、2條B、3條C、4條D、5條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)解關(guān)于x的不等式
1-x
x+1
≥0
;
(2)記(1)中不等式的解集為A,設(shè)集合B={x|(x-a-1)(2a-x)>0},(a<1).若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的通項(xiàng)公式為bn=
1
n
,求數(shù)列{
an
bn
}
的前項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案