【題目】某種商品原來每件售價(jià)為25元,年銷售8萬件.

(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了擴(kuò)大該商品的影響力,提高年銷售量,公司決定明年對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到元,公司擬投入萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量至少應(yīng)達(dá)到多少萬件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

【答案】(1)每件定價(jià)最多為;(2)當(dāng)該商品明年的銷售量至少達(dá)到萬件時(shí),才可能使明年的銷售收入不低于原收入與總收入之和,此時(shí)該商品的每件定價(jià)為

【解析】

試題分析:(1)設(shè)每件定價(jià)為元,依題意,得,解不等式即可求解結(jié)論;(2)依題意時(shí),不等式有解,等價(jià)于時(shí),得到有解,利用基本不等式,即可得到結(jié)論.

試題解析:(1)設(shè)每件定價(jià)為元,

依題意,有,

整理得,解得,

∴要使銷售的總收入不低于原收入,每件定價(jià)最多為40元.

(2)依題意,當(dāng)時(shí),不等式有解,

時(shí),不等式有解.

(當(dāng)且僅當(dāng)時(shí),等號(hào)成立),∴

∴當(dāng)該商品明年的銷售量至少達(dá)到10.2萬件時(shí),才可能使明年的銷售收入不低于原收入與總收入之和,此時(shí)該商品的每件定價(jià)為30元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圍建一個(gè)面積為360的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,設(shè)利用的舊墻的長(zhǎng)度為(單位:),修建此矩形場(chǎng)地圍墻的總費(fèi)用為(單位:元)

1)將表示為的函數(shù);

2)試確定,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解我校高2017級(jí)本部和大學(xué)城校區(qū)的學(xué)生是否愿意參加自主招生培訓(xùn)的情況,對(duì)全年級(jí)2000名高三學(xué)生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)結(jié)果如下表:

區(qū)

愿意參加

愿意參加

重慶一中本部校區(qū)

220

980

重慶一中大學(xué)城校區(qū)

80

720

1從愿意參加自主招生培訓(xùn)的同學(xué)中按分層抽樣的方法抽取15人,則大學(xué)城校區(qū)應(yīng)抽取幾人;

2現(xiàn)對(duì)愿意參加自主招生的同學(xué)組織摸底考試,考試題共有5道題,每題20分,對(duì)于這5道題,考生“如花姐”完全會(huì)答的有3題,不完全會(huì)的有2道,不完全會(huì)的每道題她得分概率滿足:,假設(shè)解答各題之間沒有影響,

①對(duì)于一道不完全會(huì)的題,求“如花姐”得分的均值;

②試求“如花姐”在本次摸底考試中總得分的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的奇數(shù)項(xiàng)是公差為的等差數(shù)列,偶數(shù)項(xiàng)是公差為的等差數(shù)列, 是數(shù)列的前項(xiàng)和,

(1)若,求;

(2)已知,且對(duì)任意的,有恒成立,求證:數(shù)列是等差數(shù)列;

(3)若,且存在正整數(shù),使得,求當(dāng)最大時(shí),數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸垂直.

1)求的單調(diào)區(qū)間;

2)設(shè),對(duì)任意,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

是函數(shù)的極值點(diǎn),求的值;

在區(qū)間上單調(diào)遞增,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市隨機(jī)抽取一年365天內(nèi)100天的空氣質(zhì)量指數(shù)的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失單位:元,空氣質(zhì)量指數(shù)在區(qū)間對(duì)企業(yè)沒有造成經(jīng)濟(jì)損失在區(qū)間對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型當(dāng)150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)200時(shí),造成的經(jīng)濟(jì)損失為700元;當(dāng)大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.

1試寫出的表達(dá)式;

2試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于200元且不超過600元的概率;

3若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表并判斷

能否有的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.82

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)和g(x)滿足:①在區(qū)間[a,b]上均有定義;②函數(shù)yf(x)-g(x)在區(qū)間[a,b]上至少有一個(gè)零點(diǎn),則稱f(x)和g(x)在[a,b]上具有關(guān)系G

(1)若f(x)=lgx,g(x)=3-x,試判斷f(x)和g(x)在[1,4]上是否具有關(guān)系G,并說明理由;

(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有關(guān)系G,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1若關(guān)于的方程在區(qū)間上有兩個(gè)不同的解

的取值范圍;

,求的取值范圍;

2設(shè)函數(shù)在區(qū)間上的最大值和最小值分別為,求的表達(dá)式

查看答案和解析>>

同步練習(xí)冊(cè)答案