【題目】已知函數(shù)

1若關于的方程在區(qū)間上有兩個不同的解

的取值范圍;

,求的取值范圍;

2設函數(shù)在區(qū)間上的最大值和最小值分別為,求的表達式

【答案】1)(i;ii;

2

【解析】

試題分析:1借助題設條件運用函數(shù)的圖象和不等式的性質求解;2借助題設運用函數(shù)的性質和分類整合思想探求

試題解析:

1,

作出函數(shù)圖象,得

的取值范圍是

,,,

則有,即

,,

的取值范圍是

2,

時,有,上為減函數(shù),

時,有,上為減函數(shù),在上為增函數(shù),

此時,,

時,有,上為減函數(shù),在上為增函數(shù),

此時,,

時,有,上為增函數(shù),在上為減函數(shù),在上為增函數(shù),

此時,

時,有,上為增函數(shù),

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某種商品原來每件售價為25元,年銷售8萬件.

(1)據(jù)市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?

(2)為了擴大該商品的影響力,提高年銷售量,公司決定明年對該商品進行全面技術革新和營銷策略改革,并提高定價到元,公司擬投入萬元作為技改費用,投入50萬元作為固定宣傳費用,投入作為浮動宣傳費用.試問:當該商品明年的銷售量至少應達到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:方程沒有實數(shù)根(),命題q:定義域為R,若命題p為真命題,p 為假命題,求k的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,側棱底面,,,的中點.

)求直線所成角的余弦值;

)在側面內找一點,使,求N點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)的圖象與x軸的任意兩個相鄰交點間的距離為,當時,函數(shù)取得最大值

1求函數(shù)的解析式,并寫出它的單調增區(qū)間;

2,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,平面PAD⊥平面ABCD,ABAD,∠BAD60°,EF分別是AP,AD的中點.

求證:(1)直線EF∥平面PCD;

2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有20個大小相同的球,其中記上0號的有10個,記上n號的有n個n=1,2,3,4,現(xiàn)從袋中任取一球,X表示所取球的標號.

1求X的分布列,均值和方差;

2若Y=aX+b,EY=1,DY=11,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點重合,點

)求 的方程;

)直線不過原點O且不平行于坐標軸,有兩個交點,線段的中點為,證明:的斜率與直線的斜率的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列是首項為0的遞增數(shù)列,,滿足:對于任意的總有兩個不同的根,則的通項公式為_________

查看答案和解析>>

同步練習冊答案