【題目】已知集合是滿足下列性質(zhì)的函數(shù)的全體:存在實(shí)數(shù),對于定義域內(nèi)的任意,均有成立,稱數(shù)對為函數(shù)的“伴隨數(shù)對”.
(1)判斷函數(shù)是否屬于集合,并說明理由;
(2)試證明:假設(shè)為定義在上的函數(shù),且,若其“伴隨數(shù)對”滿足,求證:恒成立;
(3)若函數(shù),求滿足條件的函數(shù)的所有“伴隨數(shù)對”.
【答案】(1);見解析(2)見解析;(3),,
【解析】
(1)根據(jù)題意利用恒成立,直接解出;(2)把替換成,根據(jù)成立,得出結(jié)論;(3),利用三角函數(shù)化簡得到對任意的都成立,所以,根據(jù)題意推出,再求出結(jié)論.
解:(1)由及,
可得,即為對成立,
需滿足條件,解得,,因,存在,所以.
(2)證明:由,對于定義域內(nèi)的任意,均有成立,
所以把替換成,成立,即,因?yàn)?/span>,所以,
所以,由的任意性及其存在,所以恒成立.
(3)由,得,
展開得,
所以,
即對任意的都成立,所以,
即,由于(當(dāng)且僅當(dāng)時(shí),等號成立),
所以,又因?yàn)?/span>,故.
當(dāng)時(shí),,;
當(dāng)時(shí),,.
故函數(shù)的“伴隨數(shù)對”為和,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①函數(shù)是奇函數(shù);
②將函數(shù)的圖像向左平移個(gè)單位長度,得到函數(shù)的圖像;
③若是第一象限角且,則;
④是函數(shù)的圖像的一條對稱軸;
⑤函數(shù)的圖像關(guān)于點(diǎn)中心對稱。
其中,正確的命題序號是______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.
(1)求曲線與軸,直線及軸圍成圖形的面積;
(2)若函數(shù)在上的極小值不大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求證:
(2)若函數(shù)的圖象與直線沒有交點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若函數(shù),則是否存在實(shí)數(shù),使得的最小值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 x (℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) y(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程 ;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: , )
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某盒子中共有個(gè)小球,編號為號至號,其中有個(gè)紅球、個(gè)黃球和個(gè)綠球,這些球除顏色和編號外完全相同.
(1)若從盒中一次隨機(jī)取出個(gè)球,求取出的個(gè)球中恰有個(gè)顏色相同的概率;
(2)若從盒中逐一取球,每次取后立即放回,共取次,求恰有次取到黃球的概率;
(3)若從盒中逐一取球,每次取后不放回,記取完黃球所需次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,
求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,記函數(shù)的圖象為曲線C1,函數(shù)的圖象為曲線C2.
(Ⅰ)比較f(2)和1的大小,并說明理由;
(Ⅱ)當(dāng)曲線C1在直線y=1的下方時(shí),求x的取值范圍;
(Ⅲ)證明:曲線C1和C2沒有交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對稱曲線,點(diǎn),分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com