【題目】在矩形ABCD中,,,沿矩形對角線BD將折起形成四面體ABCD,在這個過程中,現(xiàn)在下面四個結(jié)論:①在四面體ABCD中,當時,;②四面體ABCD的體積的最大值為;③在四面體ABCD中,BC與平面ABD所成角可能為;④四面體ABCD的外接球的體積為定值.其中所有正確結(jié)論的編號為( )
A.①④B.①②C.①②④D.②③④
【答案】C
【解析】
對四個結(jié)論逐一分析判斷,
對于①,利用翻折前后這個條件不變,易得平面,從而;
對于②,當平面平面時,四面體ABCD的體積最大,易得出體積;
對于③,當平面平面時,BC與平面ABD所成的角最大,即,計算其正弦值可得出結(jié)果;
對于④,在翻折的過程中,BD的中點到四面體四個頂點的距離均相等,所以外接球的直徑恒為BD,體積恒為定值.
如圖,當時,∵,∴平面,
∵平面,∴,即①正確;
當平面平面時,四面體ABCD的體積最大,最大值為,即②正確;
當平面平面時,BC與平面ABD所成的角最大,為,而,
∴BC與平面ABD所成角一定小于,即③錯誤;
在翻折的過程中,和始終是直角三角形,斜邊都是BD,其外接球的球心永遠是BD的中點,外接球的直徑為BD,
∴四面體ABCD的外接球的體積不變,即④正確.
故正確的有①②④.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】一個口袋中裝有大小相同的5個小球,編號分別為0,1,2,3,4,現(xiàn)從中隨機地摸一個球,記下編號后放回,連摸3次,若摸出的3個小球的最大編號與最小編號之差為2,則共有________種不同的摸球方法(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在實數(shù)k,b,使得函數(shù)和對其定義域上的任意實數(shù)x同時滿足:且,則稱直線:為函數(shù)和的“隔離直線”.已知,(其中e為自然對數(shù)的底數(shù)).試問:
(1)函數(shù)和的圖象是否存在公共點,若存在,求出交點坐標,若不存在,說明理由;
(2)函數(shù)和是否存在“隔離直線”?若存在,求出此“隔離直線”的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線上的點到焦點的距離為.
(1)求的值;
(2)如上圖,已知動線段(在的右邊)在直線上,且,現(xiàn)過作的切線,取左邊的切點,過作的切線,取右邊的切點為,當,求點的橫坐標的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年4月8日零時正式解除離漢通道管控,這標志著封城76天的武漢打開城門了.在疫情防控常態(tài)下,武漢市有序復工復產(chǎn)復市,但是仍然不能麻痹大意仍然要保持警惕,嚴密防范、慎終如始.為科學合理地做好小區(qū)管理工作,結(jié)合復工復產(chǎn)復市的實際需要,某小區(qū)物業(yè)提供了A,B兩種小區(qū)管理方案,為了決定選取哪種方案為小區(qū)的最終管理方案,隨機選取了4名物業(yè)人員進行投票,物業(yè)人員投票的規(guī)則如下:①單獨投給A方案,則A方案得1分,B方案得﹣1分;②單獨投給B方案,則B方案得1分,A方案得﹣1分;③棄權(quán)或同時投票給A,B方案,則兩種方案均得0分.前1名物業(yè)人員的投票結(jié)束,再安排下1名物業(yè)人員投票,當其中一種方案比另一種方案多4分或4名物業(yè)人員均已投票時,就停止投票,最后選取得分多的方案為小區(qū)的最終管理方案.假設A,B兩種方案獲得每1名物業(yè)人員投票的概率分別為和.
(1)在第1名物業(yè)人員投票結(jié)束后,A方案的得分記為ξ,求ξ的分布列;
(2)求最終選取A方案為小區(qū)管理方案的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設m為整數(shù),.整數(shù)數(shù)列滿足:不全為零,且對任意正整數(shù)n,均有.證明:若存在整數(shù)r、s(r>s≥2)使得,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)(x∈R,實數(shù)a∈[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),).
(Ⅰ)若f(x)≥0在x∈R上恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若ex≥lnx+m對任意x>0恒成立,求證:實數(shù)m的最大值大于2.3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,平面四邊形中,為直角,為等邊三角形,現(xiàn)把沿著折起,使得平面與平面垂直,且點M為的中點.
(1)求證:平面平面;
(2)若,求直線與平面所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com