【題目】設(shè)函數(shù)(x∈R,實數(shù)a∈[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),).
(Ⅰ)若f(x)≥0在x∈R上恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若ex≥lnx+m對任意x>0恒成立,求證:實數(shù)m的最大值大于2.3.
【答案】(Ⅰ);(Ⅱ)見解析
【解析】
(Ⅰ)分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值,問題得以解決;
(Ⅱ)構(gòu)造函數(shù)設(shè),利用導(dǎo)數(shù)求出函數(shù)的最值,即可證明.
(Ⅰ)∵,f(x)≥0在x∈R上恒成立,∴a≤,
設(shè)h(x)=,∴h′(x)=,令h′(x)=0,解得x=,
當x>,即h′(x)>0,函數(shù)單調(diào)遞增,
當x<,即h′(x)<0,函數(shù)單調(diào)遞減,
∴h(x)min=h()=,∴0<a≤,
故a的取值范圍為;
(Ⅱ)設(shè),
∴,g'(x)>0,可得;g'(x)<0,可得.
∴g(x)在(,+∞)上單調(diào)遞增;在上單調(diào)遞減.
∴g(x)≥g()=,∵,
∴>1.6,∴g(x)>2.3.
由(Ⅰ)可得exx,
∴ex﹣lnx的最小值大于2.3,
故若ex≥lnx+m對任意x>0恒成立,則m的最大值一定大于2.3.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線Cn:x2﹣2nx+y2=0,(n=1,2,…).從點P(﹣1,0)向曲線Cn引斜率為kn(kn>0)的切線ln,切點為Pn(xn,yn).
(1)求數(shù)列{xn}與{yn}的通項公式;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學史上的一個偉大成就,在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項,依次構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前15項和為( )
A. 110B. 114C. 124D. 125
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線與軸軸分別交于兩點.
①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓,拋物線的頂點為,準線的方程為,為拋物線上的動點,過點作圓的兩條切線與軸交于.
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求△面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為6,離心率為.
(1)求橢圓C的標準方程;
(2)設(shè)橢圓C的左、右焦點分別為,,左、右頂點分別為A,B,點M,N為橢圓C上位于x軸上方的兩點,且,記直線AM,BN的斜率分別為,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元.該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸.
(1)列出甲、乙兩種產(chǎn)品滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)在一個生產(chǎn)周期內(nèi)該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸時可獲得利潤最大,最大利潤是多少?
(用線性規(guī)劃求解要畫出規(guī)范的圖形及具體的解答過程)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著社會的發(fā)展,終身學習成為必要,工人知識要更新,學習培訓必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).
(1)問類、類工人各抽查了多少工人,并求出直方圖中的;
(2)求類工人生產(chǎn)能力的中位數(shù),并估計類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產(chǎn)能力與培訓時間長短有關(guān).能力與培訓時間列聯(lián)表
短期培訓 | 長期培訓 | 合計 | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com