【題目】如圖,已知橢圓C:1(a>b>0)的離心率為,短軸長為2,直線l與圓O:x2+y2相切,且與橢圓C相交于M、N兩點.
(1)求橢圓C的方程;
(2)證明:為定值.
【答案】(1)1;(2)證明見解析
【解析】
(1)根據(jù)橢圓中基本量的關(guān)系列式求解即可.
(2)由題可設直線,再根據(jù)直線與圓相切可得,再聯(lián)立直線與橢圓的方程求得的解析式,再代入化簡求值即可.
(1)解:由題意可得:,2b=2,a2=b2+c2,聯(lián)立解得a=2,b=1,c.
∴橢圓C的方程為1.
(2)證明:設M(x1,y1),N(x2,y2),
直線l的斜率不為0時,設直線l的方程為:my=x﹣t,
∵直線l與圓O:x2+y2相切,
則,化為:5t2=4m2+4.
聯(lián)立,化為:(m2+4)y2+2mty+t2﹣4=0,△>0.
∴y1+y2,y1y2,
x1x2=(my1+t)(my2+t)=m2y1y2+mt(y1+y2)+t2.
∴x1x2+y1y2=(m2+1)y1y2+mt(y1+y2)+t2
=(m2+1)mt()+t20,
直線l的斜率為0時,上式也成立.
因此0為定值.
科目:高中數(shù)學 來源: 題型:
【題目】眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達到預防近視等眼部疾病的目的.某學校為了調(diào)查推廣眼保健操對改善學生視力的效果,在應屆高三的全體800名學生中隨機抽取了100名學生進行視力檢查,并得到如圖的頻率分布直方圖.
(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);
(2)為了研究學生的視力與眼保健操是否有關(guān)系,對年級不做眼保健操和堅持做眼保健操的學生進行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系?
(3)在(2)中調(diào)查的100名學生中,按照分層抽樣在不近視的學生中抽取8人,進一步調(diào)查他們良好的護眼習慣,在這8人中任取2人,記堅持做眼保健操的學生人數(shù)為X,求X的分布列和數(shù)學期望.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司新發(fā)明了甲、乙兩種不同型號的手機,公司統(tǒng)計了消費者對這兩種型號手機的評分情況,作出如下的雷達圖,則下列說法不正確的是( )
A. 甲型號手機在外觀方面比較好.B. 甲、乙兩型號的系統(tǒng)評分相同.
C. 甲型號手機在性能方面比較好.D. 乙型號手機在拍照方面比較好.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x+2φ)為偶函數(shù),其中φ∈(0,),則下列關(guān)于函數(shù)g(x)=sin(2x+φ)的描述正確的是( )
A.g(x)在區(qū)間[]上的最小值為﹣1
B.g(x)的圖象可由函數(shù)f(x)的圖象向上平移一個單位,再向右平移個單位長度得到
C.g(x)的圖象的一個對稱中心為(,0)
D.g(x)的一個單調(diào)遞增區(qū)間為[0,]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某娛樂節(jié)目參賽選手分初賽培訓、復賽三個階段選拔,將50位參選手的初賽成績(總分150分)分成[90,100),[100,110),[110,120),[120,130),[130,140)5組進行統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分析直方圖,估算這50個選手初賽成績的平均分,若節(jié)日組規(guī)定成績大于或等于120分的選手可獲得節(jié)目組組織的培訓資格,120分以下(不包括120)的則被淘汰,求這50個人中獲得培訓資格的人數(shù);
(2)節(jié)目組從獲得培訓資格的人員中選拔部分人員進入復賽.為增加節(jié)目的娛樂性,節(jié)目組提供了以下兩種進入復賽的方式(每位選手只能選擇其中一種)
第一種方式:利用分層抽樣的方法抽取6名選手參加復賽;
第二種方式:每人最多有5次答題機會,累計答對3題或答錯3題終止答題,答對3題可參加復賽
①已知甲的初賽成績在[120,130)內(nèi),他答對每一個問題的概率為,并且互相之間沒有影響甲要想?yún)⒓訌唾,選擇那種方式更有利?
②若甲選擇第二種方式,求他在答題過程中答題個數(shù)X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其定義域為.(其中常數(shù),是自然對數(shù)的底數(shù))
(1)求函數(shù)的遞增區(qū)間;
(2)若函數(shù)為定義域上的增函數(shù),且,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點在底面內(nèi)的射影在線段上,且, ,M在線段上,且.
(Ⅰ)證明: 平面;
(Ⅱ)在線段AD上確定一點F,使得平面平面PAB,并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年9月15中秋節(jié)(農(nóng)歷八月十五)到來之際,某月餅銷售企業(yè)進行了一項網(wǎng)上調(diào)查,得到如下數(shù)據(jù):
男 | 女 | 合計 | |
喜歡吃月餅人數(shù)(單位:萬人) | 50 | 40 | 90 |
不喜歡吃月餅人數(shù)(單位:萬人) | 30 | 20 | 50 |
合計 | 80 | 60 | 140 |
為了進一步了解中秋節(jié)期間月餅的消費量,對參與調(diào)查的喜歡吃月餅的網(wǎng)友中秋節(jié)期間消費月餅的數(shù)量進行了抽樣調(diào)查,得到如下數(shù)據(jù):
已知該月餅廠所在銷售范圍內(nèi)有30萬人,并且該廠每年的銷售份額約占市場總量的35%.
(1)試根據(jù)所給數(shù)據(jù)分析,能否有以上的把握認為,喜歡吃月餅與性別有關(guān)?
參考公式與臨界值表:,
其中:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(2)若忽略不喜歡月餅者的消費量,請根據(jù)上述數(shù)據(jù)估計:該月餅廠恰好生產(chǎn)多少噸月餅恰好能滿足市場需求?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到定點和到直線的距離之比為,設動點的軌跡為曲線,過點作垂直于軸的直線與曲線相交于兩點,直線與曲線交于兩點,與相交于一點(交點位于線段上,且與不重合).
(1)求曲線的方程;
(2)當直線與圓相切時,四邊形的面積是否有最大值?若有,求出其最大值及對應的直線的方程;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com