分析 由各項均為正數(shù)的數(shù)列{an}滿足(2an+1-an)(an+1an-1)=0(n∈N*),可得:${a}_{n+1}=\frac{1}{2}{a}_{n}$,或an+1an=1.又a1=a20,a19a20=1,應該使得a19取得最小值.利用等比數(shù)列的通項公式及其已知條件即可得出.
解答 解:∵各項均為正數(shù)的數(shù)列{an}滿足(2an+1-an)(an+1an-1)=0(n∈N*),
∴${a}_{n+1}=\frac{1}{2}{a}_{n}$,或an+1an=1.
又a1=a20,a19a20=1,應該使得a19取得最小值.
根據(jù)${a}_{n+1}=\frac{1}{2}{a}_{n}$,可得數(shù)列{an}為等比數(shù)列,公比為$\frac{1}{2}$(n≤19).
取a19=${a}_{1}×(\frac{1}{2})^{18}$,a1>0.又a19=$\frac{1}{{a}_{20}}$=$\frac{1}{{a}_{1}}$,
∴${a}_{1}×(\frac{1}{2})^{18}$=$\frac{1}{{a}_{1}}$,
解得a1=29=512.
∴a1的最大值是512.
故答案為:512.
點評 本題考查了等比數(shù)列的通項公式及其性質(zhì)、遞推關(guān)系,考查了分析問題與解決問題的能力、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,2) | B. | (0,3) | C. | (2,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | -2 | D. | ±2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com