4.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)-1,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)F(x)=cos(2x-$\frac{π}{3}$)+3|f(x)+1|-m,x∈[-$\frac{π}{2}$,$\frac{π}{3}$]有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

分析 (1)利用誘導(dǎo)公式、二倍角的正弦公式,兩角和的正弦公式化簡解析式,由正弦函數(shù)的減區(qū)間求出f(x)的單調(diào)遞減區(qū)間;
(2)由(1)化簡F(x)的解析式,將F(x)有三個(gè)零點(diǎn)轉(zhuǎn)化為對應(yīng)的方程有三個(gè)不同的解,由x的范圍求出2x+$\frac{π}{6}$的范圍,設(shè)t=$2x+\frac{π}{6}$,令g(t)=sint+3|sint|,再轉(zhuǎn)化為函數(shù)g(t)的圖象與直線y=m有三個(gè)交點(diǎn),化簡g(t)的解析式后由正弦函數(shù)的圖象畫出圖象,由條件和圖象求出實(shí)數(shù)m的取值范圍.

解答 解:(1)由題意得,f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos(x-$\frac{π}{4}$)sin(x-$\frac{π}{4}$)-1
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$sin(2x-$\frac{π}{2}$)-1
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$sin2x-1=$sin(2x+\frac{π}{6})-1$,
由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ(k∈Z)$得,
$\frac{π}{6}+kπ≤x≤\frac{2π}{3}+kπ(k∈Z)$,
∴f(x)的單調(diào)遞增區(qū)間是$[\frac{π}{6}+kπ,\frac{2π}{3}+kπ](k∈Z)$;
(2)由(1)得,f(x)=$sin(2x+\frac{π}{6})-1$,
∴F(x)=cos(2x-$\frac{π}{3}$)+3|$sin(2x+\frac{π}{6})$|-m,
因此,F(xiàn)(x)在x∈[-$\frac{π}{2}$,$\frac{π}{3}$]上有三個(gè)零點(diǎn),
等價(jià)于方程cos(2x-$\frac{π}{3}$)+3|$sin(2x+\frac{π}{6})$|-m=0在x∈[-$\frac{π}{2}$,$\frac{π}{3}$]上有三個(gè)不同的根,
由$x∈[-\frac{π}{2},\frac{π}{3}]$得,$2x+\frac{π}{6}∈[-\frac{5π}{6},\frac{5π}{6}]$,
設(shè)t=$2x+\frac{π}{6}$,則$t∈[-\frac{5π}{6},\frac{5π}{6}]$,
令g(t)=sint+3|sint|,且$t∈[-\frac{5π}{6},\frac{5π}{6}]$,
∴方程cos(2x-$\frac{π}{3}$)+3|$sin(2x+\frac{π}{6})$|-m=0在x∈[-$\frac{π}{2}$,$\frac{π}{3}$]上有三個(gè)不同的根,
等價(jià)于函數(shù)g(t)的圖象與直線y=m由三個(gè)不同的交點(diǎn),

又函數(shù)g(t)=sint+3|sint|=$\left\{\begin{array}{l}{-2sint,t∈[-\frac{5π}{6},0)}\\{4sint,t∈[0,\frac{5π}{6}]}\end{array}\right.$的圖象如圖所示:
由圖得,實(shí)數(shù)m的取值范圍是[1,2].

點(diǎn)評 本題考查正弦函數(shù)的圖象與性質(zhì),三角恒等變換中的公式,以及函數(shù)零點(diǎn)、方程的根與函數(shù)圖象交點(diǎn)之間的關(guān)系,考查轉(zhuǎn)化思想,數(shù)形結(jié)合思想,化簡、變形能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在如圖所示的四棱錐P-ABCD中,四邊形ABCD為正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分別為PD,CD,AD的中點(diǎn),$\overrightarrow{PF}$=3$\overrightarrow{FD}$.
(1)證明:PB∥平面FMN;
(2)若PA=AB,求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.能夠把⊙M:(x-2)2+(y-2)2=1的面積一分為二的曲線C:f(x,y)=0被稱為⊙M的“八卦曲線”,下列對⊙M的“八卦曲線”C的判斷正確的是( 。
A.“八卦曲線”C一定是函數(shù)
B.“八卦曲線”C的圖象一定關(guān)于直線x=2成軸對稱
C.“八卦曲線”C的圖象一定關(guān)于點(diǎn)(2,2)成中心對稱
D.“八卦曲線”C的方程為y=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|2≤x<2a-1},B={x|1≤x≤6-a},若3∈A∩B,則實(shí)數(shù)a的取值范圍是(  )
A.a>2B.2≤a<3C.2≤a≤3D.2<a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),如果P(X≤1)=0.8413,則P(-1<X<0)=0.3413.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將1,2,3,4,5,6這六個(gè)數(shù)字組成一個(gè)沒有重復(fù)數(shù)字的六位數(shù),若1和2相鄰,且3和4不相鄰,則這樣六位數(shù)的個(gè)數(shù)為( 。
A.288B.144C.72D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=x+cosx,若曲線y=f(x)在點(diǎn)(π,f(π))處的切線方程為y=ax+b,則a+b=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足(2an+1-an)(an+1an-1)=0(n∈N*),且a1=a20,則a1的最大值是512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.甲、乙、丙3人獨(dú)立地破譯某個(gè)密碼,每人譯出密碼的概率均為$\frac{1}{4}$,則恰有2人譯出密碼的概率是$\frac{9}{64}$.

查看答案和解析>>

同步練習(xí)冊答案