11.現(xiàn)從4名男生和5名女生中任選取3人,若必須有男有女,則不同的選法共有( 。
A.140種B.80種C.70種D.35種

分析 根據(jù)題意,用間接法分析:先計(jì)算從4名男生和5名女生共9人中任選取3人的取法,從中減去選出的3人全部為男生的選法數(shù),再減去選出的3人全部為女生的選法數(shù),即得所求.

解答 解:根據(jù)題意,從4名男生和5名女生共9人中任選取3人,有C93=84種取法,
其中只有男生沒有女生的取法有C43=4種,
只有女生沒有男生的取法有C53=10種,
則不同的選法有84-4-10=70種;
故選:C.

點(diǎn)評 本題考查排列、組合的應(yīng)用,運(yùn)用間接法分析,可以避免分類討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求經(jīng)過直線x-2y-3=0和2x-3y-2=0的交點(diǎn),且在兩坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若向量$\overrightarrow{AB}$=(2,4),$\overrightarrow{BC}$=(-2,2n),$\overrightarrow{AC}$=(m,2),m,n∈R,則m+n的值為( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知log27=a,log32=b,用a,b表示log2863=$\frac{ab+2}{ab+2b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱椎P-ABCD中,底面ABCD為矩形,平面PCD⊥面ABCD,BC=1,AB=2,PC=$PD=\sqrt{2}$,E為PA中點(diǎn).
(1)求證:PC∥平面BED;
(2)求三棱錐E-PBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=Asin(ωx+α)(A>0,ω>0,|α|<π),在同一周期內(nèi),當(dāng)$x=\frac{π}{12}$時(shí),f(x)取得最大值2;當(dāng)$x=\frac{7π}{12}$時(shí),f(x)取得最小值-2
(1)求函數(shù)f(x)的解析式;                      
(2)求函數(shù)f(x)的單調(diào)減區(qū)間(3)若$x∈[{-\frac{π}{3},\frac{π}{6}}]$時(shí),函數(shù)h(x)=2f(x)+1-m有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為9ρ2cos2θ+16ρ2sin2θ=144,且直線l與曲線C交于P,Q兩點(diǎn).
(Ⅰ)求曲線C的直角坐標(biāo)方程及直線l恒過的頂點(diǎn)A的坐標(biāo);
(Ⅱ)在(Ⅰ)的條件下,若|AP|•|AQ|=9,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.用0、1、2、3、4這5個(gè)數(shù)字,組成無重復(fù)數(shù)字的五位數(shù),其中偶數(shù)有( 。
A.36個(gè)B.72個(gè)C.48個(gè)D.60個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a>0,b>0,若直線l1:x+a2y+2=0與直線l2:(a2+1)x-by+3=0互相垂直,則ab的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案