【題目】某班有個小組,甲、乙、丙三人分別在不同的小組.某次數(shù)學(xué)考試成績公布情況如下:甲和三人中等第小組的那位的成績不一樣,丙比三人中第組的那位的成績低,三人中第小組的那位比乙的成績高.若將甲、乙、丙三人按數(shù)學(xué)成績由高到低排列,則正確的排列順序是______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市2018年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車牌照2萬張,為了節(jié)能減排和控制牌照總量,從2018年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動型汽車牌照的數(shù)量維持在這一年的水平不變,記2018年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列,每年發(fā)放電動型汽車牌照數(shù)構(gòu)成數(shù)列.
(1)完成下列表格,并寫出這兩個數(shù)列的通項(xiàng)公式;
______ | ______ | ||
______ | ______ |
(2)累計(jì)每年發(fā)放的牌照數(shù),哪一年開始不低于200萬(注:)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知f(x)=|x+a|(a∈R).
(1)若f(x)≥|2x﹣1|的解集為[0,2],求a的值;
(2)若對任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計(jì)局從東部選擇江蘇,從中部選擇河北. 湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記.由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn).在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 50 | |
個體經(jīng)營戶 | 50 | 150 | |
合計(jì) |
(1)寫出選擇 5 個國家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)補(bǔ)全上述列聯(lián)表(在答題卡填寫),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;
(3)根據(jù)該試點(diǎn)普查小區(qū)的情況,為保障第四次經(jīng)濟(jì)普查的順利進(jìn)行,請你從統(tǒng)計(jì)的角度提出一條建議.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2016年的自主招生考試成績中隨機(jī)抽取了100名學(xué)生的筆試成績,按成績分組,得到的頻率分布如下表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | ① | 0.350 | |
第3組 | 30 | ② | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計(jì) | 100 | 1.00 |
(1)請求出頻率分布表中①、②處應(yīng)填的數(shù)據(jù);
(2)為了能選拔最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣法抽取6名學(xué)生進(jìn)入第二輪面試,問第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官進(jìn)行的面試,求第4組有一名學(xué)生被考官A面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】淘汰落后產(chǎn)能,對生產(chǎn)設(shè)備進(jìn)行升級改造是企業(yè)生存發(fā)展的重要前提.某企業(yè)今年對舊生產(chǎn)設(shè)備的一半進(jìn)行了升級,剩下的一半在今后的兩年內(nèi)完成升級.為了分析新舊設(shè)備的生產(chǎn)質(zhì)量,從新舊設(shè)備生產(chǎn)的產(chǎn)品中各抽取了件作為樣本,對最重要的一項(xiàng)質(zhì)量指標(biāo)進(jìn)行檢測,該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品為合格品,否則為不合格品.檢測數(shù)據(jù)如下:
表1:日設(shè)備生產(chǎn)的產(chǎn)品樣本頻數(shù)分布表
質(zhì)量指標(biāo) | ||||||
頻數(shù) | 3 | 16 | 44 | 12 | 22 | 3 |
表2:新設(shè)備生產(chǎn)的產(chǎn)品樣本頻數(shù)分布表
質(zhì)量指標(biāo) | ||||||
頻數(shù) | 1 | 20 | 52 | 16 | 10 | 1 |
(1)根據(jù)表1和表2提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對新舊設(shè)備的優(yōu)劣進(jìn)行比較;
(2)面向市場銷售時,只有合格品才能銷售,這時需要對合格品的品質(zhì)進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)落在內(nèi)的定為優(yōu)質(zhì)品,質(zhì)量指標(biāo)落在或內(nèi)的定為一等品,其它的合格品定為二等品.完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與新舊設(shè)備有關(guān);
舊設(shè)備 | 新設(shè)備 | 合計(jì) | |
優(yōu)質(zhì)品及一等品 | |||
二等品及不合格品 | |||
合計(jì) | /span> |
(3)優(yōu)質(zhì)品每件售價(jià)元,一等品每件售價(jià)元,二等品每件售價(jià)元根據(jù)表1和表2中的數(shù)據(jù),用該組樣本中優(yōu)質(zhì)品、一等品、二等品各自在合格品中的頻率代替從合格產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望(結(jié)果保留整數(shù)).
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】萬眾矚目的第14屆全國冬季運(yùn)動運(yùn)會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:
(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表;并判斷能否有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān);
(2)在全!氨┟浴敝邪葱詣e分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運(yùn)動知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有個小組,甲、乙、丙三人分別在不同的小組.某次數(shù)學(xué)考試成績公布情況如下:甲和三人中等第小組的那位的成績不一樣,丙比三人中第組的那位的成績低,三人中第小組的那位比乙的成績高.若將甲、乙、丙三人按數(shù)學(xué)成績由高到低排列,則正確的排列順序是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:(),過點(diǎn)且斜率為1的直線與拋物線交于,兩點(diǎn),且為的中點(diǎn).
(1)求拋物線的方程;
(2)設(shè)直線與軸交點(diǎn)為,若過的直線與拋物線交于,兩點(diǎn),求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com