函數(shù)的最小值為    
【答案】分析:先利用配湊法將函數(shù)式配成積為定值,再利用基本不等式進(jìn)行放縮,即可求得函數(shù)的最小值.
解答:解:∵f(x)=x+
=x+1+,
∴函數(shù)的最小值為:
故答案為:
點(diǎn)評(píng):本小題主要考查函數(shù)的最值及其幾何意義、基本不等式、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

探究函數(shù)f(x)=2x+
8
x
-3,x∈(0,+∞)上的最小值,并確定取得最小值時(shí)x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 14 7 5.34 5.11 5.01 5 5.01 5.04 5.08 5.67 7 8.6 12.14
(1)觀察表中y值隨x值變化趨勢(shì)特點(diǎn),請(qǐng)你直接寫出函數(shù)f(x)=2x+
8
x
-3,x∈(0,+∞)的單調(diào)區(qū)間,并指出當(dāng)x取何值時(shí)函數(shù)的最小值為多少;
(2)用單調(diào)性定義證明函數(shù)f(x)=2x+
8
x
-3在(0,2)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列哪個(gè)函數(shù)的最小值為3( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=lg
x2+1|x|
 (x≠0)有下列命題:
(1)函數(shù)圖象關(guān)于y軸對(duì)稱;
(2)當(dāng)x>0時(shí),函數(shù)是增函數(shù),當(dāng)x<0時(shí),函數(shù)是減函數(shù);
(3)函數(shù)的最小值為lg2;
(4)函數(shù)是周期函數(shù).
其中正確命題的序號(hào)是
(1)(3)
(1)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=x2-2x,x∈[-2,a],若函數(shù)的最小值為g(a),則g(a)=
a2-2a
a2-2a

查看答案和解析>>

同步練習(xí)冊(cè)答案